This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Time-lapse difference static correction using prestack crosscorrelations: 4D seismic image enhancement case from Ketzin

Authors:

A method for static correction of time-lapse differences in reflection arrival times of time-lapse prestack seismic data is presented. These arrival-time differences are typically caused by changes in the near-surface velocities between the acquisitions and had a detrimental impact on time-lapse seismic imaging. Trace-to-trace time shifts of the data sets from different vintages are determined by crosscorrelations. The time shifts are decomposed in a surface-consistent manner, which yields static corrections that tie the repeat data to the baseline data. Hence, this approach implies that new refraction static corrections for the repeat data sets are unnecessary. The approach is demonstrated on a 4D seismic data set from the Ketzin CO2 pilot storage site, Germany, and is compared with the result of an initial processing that was based on separate refraction static corrections. It is shown that the time-lapse difference static correction approach reduces 4D noise more effectively than separate refraction static corrections and is significantly less labor intensive.

REFERENCES

  • Bergmann, P., C. Yang, S. Lüth, C. Juhlin, and C. Cosma, 2011, Timelapse processing of 2D seismic profiles with testing of static correction methods at the CO2 injection site Ketzin (Germany): Journal of Applied Geophysics, 75, 124–139, doi: 10.1016/j.jappgeo.2011.05.005.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Beutler, G., N. Hauschke, and E. Nitsch, 1999, Faziesentwicklung des Keupers im Germanischen Becken, in Hauschke, N.V. Wilde, eds., Trias, eine ganz andere Welt: Verlag.Google Scholar
  • Cantillo, J., 2011, A quantitative discussion on time-lapse repeatability and its metrics: 81st Annual International Meeting, SEG, Expanded Abstracts, 4160–4164.AbstractGoogle Scholar
  • Chadwick, R. A., G. A. Williams, J. D. O. Williams, and D. J. Noy, 2012, Measuring pressure performance of a large saline aquifer during industrial-scale CO2 injection: The Utsira Sand, Norwegian North Sea: International Journal of Greenhouse Gas Control, 10, 374–388, doi: 10.1016/j.ijggc.2012.06.022.IJGGBW1750-5836CrossrefWeb of ScienceGoogle Scholar
  • Dahl-Jensen, T., 1989, Static corrections on crystalline rock: Geophysical Prospecting, 37, 467–478, doi: 10.1111/j.1365-2478.1989.tb02218.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Förster, A., B. Norden, K. Zinck-Jørgensen, P. Frykman, J. Kulenkampff, E. Spangenberg, J. Erzinger, M. Zimmer, J. Kopp, G. Borm, C. Juhlin, C. Cosma, and S. Hurter, 2006, Baseline characterization of the CO2SINK geological storage site at Ketzin, Germany: Environmental Geosciences, 13, 145–161, doi: 10.1306/eg.02080605016.1075-9565CrossrefGoogle Scholar
  • Fuck, R. F., I. Tsvankin, and A. Bakulin, 2011, Influence of background heterogeneity on traveltime shifts for compacting reservoirs: Geophysical Prospecting, 59, 78–89, doi: 10.1111/j.1365-2478.2010.00909.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Götz, J., 2013, Borehole seismic monitoring of CO2 storage within a saline aquifer at Ketzin, Germany: Ph.D. thesis, Technical University Berlin.Google Scholar
  • Hatchell, P., and S. Bourne, 2005, Rocks under strain: Strain-induced time-lapse time shifts are observed for depleting reservoirs: The Leading Edge, 24, 1222–1225, doi: 10.1190/1.2149624.1070-485XAbstractGoogle Scholar
  • Haugvaldstad, H., B. Lyngnes, P. Smith, and A. Thompson, 2011, Ekofisk time-lapse seismic — A continuous process of improvement: First Break, 29, 113–120.0263-5046CrossrefGoogle Scholar
  • Ivandic, M., C. Yang, S. Lüth, C. Cosma, and C. Juhlin, 2012, Time-lapse analysis of sparse 3D seismic data from the CO2 storage pilot site at Ketzin, Germany: Journal of Applied Geophysics, 84, 14–28, doi: 10.1016/j.jappgeo.2012.05.010.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Ivanova, A., A. Kashubin, N. Juhojuntti, J. Kummerow, J. Henninges, C. Juhlin, S. Lüth, and M. Ivandic, 2012, Monitoring and volumetric estimation of injected CO2 using 4D seismic, petrophysical data, core measurements and well logging: A case study at Ketzin, Germany: Geophysical Prospecting, 60, 957–973, doi: 10.1111/j.1365-2478.2012.01045.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Juhlin, C., R. Giese, K. Zinck-Jørgensen, C. Cosma, H. Kazemeini, N. Juhojuntti, S. Lüth, B. Norden, and A. Förster, 2007, 3D baseline seismics at Ketzin, Germany: The CO2SINK project: Geophysics, 72, no. 5, B121–B132, doi: 10.1190/1.2754667.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Kashubin, A., C. Juhlin, A. Malehmir, S. Lüth, A. Ivanova, and N. Juhojuntti, 2011, A footprint of rainfall on land seismic data repeatability at the CO2 storage pilot site, Ketzin, Germany: 81st Annual International Meeting, SEG, Expanded Abstracts, 4165–4169.Google Scholar
  • Kragh, E., and P. Christie, 2002, Seismic repeatability, normalized RMS and predictability: The Leading Edge, 21, 640–647, doi: 10.1190/1.1497316.1070-485XAbstractGoogle Scholar
  • Landrø, M., and J. Stammeijer, 2004, Quantitative estimation of compaction and velocity changes using 4D impedance and traveltime changes: Geophysics, 69, 949–957, doi: 10.1190/1.1778238.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Lawton, D. C., 1989, Computation of refraction static corrections using first-break traveltime differences: Geophysics, 54, 1289–1296, doi: 10.1190/1.1442588.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Liebscher, A., S. Martens, F. Möller, and M. Kühn, 2012, On-shore CO2 storage in Germany — Experiences gained from the Ketzin pilot site, Brandenburg, the sole German national CO2 storage project, in Gluyas, J.S. Mathias, eds., Geoscience of carbon dioxide (CO2 storage): Woodhead Publishing Limited.Google Scholar
  • Lüth, S., P. Bergmann, C. Cosma, N. Enescu, R. Giese, J. Gotz, A. Ivanova, C. Juhlin, A. Kashubin, C. Yang, and F. Zhang, 2011, Time-lapse seismic surface and down-hole measurements for monitoring CO2 storage in the CO2SINK project (Ketzin, Germany): Energy Procedia, 4, 3435–3442, doi: 10.1016/j.egypro.2011.02.268.EPNRCV1876-6102CrossrefGoogle Scholar
  • Martens, S., T. Kempka, A. Liebscher, S. Lüth, F. Möller, A. Myrttinen, B. Norden, C. Schmidt-Hattenberger, M. Zimmer, and M. Kühn, 2012, Europe’s longest-operating on-shore CO2 storage site at Ketzin, Germany: A progress report after three years of injection: Environmental Earth Sciences, 67, 323–334, doi: 10.1007/s12665-012-1672-5.CrossrefWeb of ScienceGoogle Scholar
  • Martens, S., A. Liebscher, F. Möller, J. Henninges, T. Kempka, S. Lüth, B. Norden, B. Prevedel, A. Szizybalski, M. Zimmer, and M. Kühn, and the Ketzin Group, 2013, CO2 storage at the Ketzin pilot site, Germany: Fourth year of injection, monitoring, modelling and verification: Energy Procedia, 37, 6434–6443, doi: 10.1016/j.egypro.2013.06.573.EPNRCV1876-6102CrossrefGoogle Scholar
  • Martens, S., A. Liebscher, F. Möller, H. Würdemann, F. Schilling, and M. Kühn, 2011, Progress report on the first European on-shore CO2 storage site at Ketzin (Germany) — Second year of injection: Energy Procedia, 4, 3246–3253, doi: 10.1016/j.egypro.2011.02.243.EPNRCV1876-6102CrossrefGoogle Scholar
  • Norden, B., A. Förster, D. Vu-Hoang, F. Marcelis, N. Springer, and I. Le Nir, 2010, Lithological and petrophysical core-log interpretation in CO2SINK, The European onshore research storage and verification project: SPE Reservoir Evaluation and Engineering, 13, 179–192, doi: 10.2118/115247-PA.SREEFG1094-6470CrossrefWeb of ScienceGoogle Scholar
  • Palmer, D., 2010a, Non-uniqueness with refraction inversion — A syncline model study: Geophysical Prospecting, 58, 203–218, doi: 10.1111/j.1365-2478.2009.00818.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Palmer, D., 2010b, Non-uniqueness with refraction inversion — The Mt Bulga shear zone: Geophysical Prospecting, 58, 561–575, doi: 10.1111/j.1365-2478.2009.00855.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Rickett, J., L. Duranti, T. Hudson, B. Regel, and N. Hodgson, 2007, 4D time strain and the seismic signature of geomechanical compaction at genesis: The Leading Edge, 26, 644–647, doi: 10.1190/1.2737103.1070-485XAbstractGoogle Scholar
  • Ronen, J., and J. Claerbout, 1985, Surface-consistent residual statics estimation by stack-power maximization: Geophysics, 50, 2759–2767, doi: 10.1190/1.1441896.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Schilling, F., G. Borm, H. Würdemann, F. Möller, and M. Kühn, 2009, Status report on the first European on-shore CO2 storage site at Ketzin (Germany): Energy Procedia, 1, 2029–2035, doi: 10.1016/j.egypro.2009.01.264.EPNRCV1876-6102CrossrefGoogle Scholar
  • Taner, M., F. Koehler, and K. Alhilali, 1974, Estimation and correction of near-surface time anomalies: Geophysics, 39, 441–463, doi: 10.1190/1.1440441.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Taner, M. T., and F. Koehler, 1981, Surface consistent corrections: Geophysics, 46, 17–22, doi: 10.1190/1.1441133.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Trani, M., R. Arts, O. Leeuwenburgh, and J. Brouwer, 2011, Estimation of changes in saturation and pressure from 4D seismic and AVO time-shift analysis: Geophysics, 76, no. 2, C1–C17, doi: 10.1190/1.3549756.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • White, D. J., 2013, Toward quantitative CO2 storage estimates from time-lapse 3D seismic travel times: An example from the IEA GHG Weyburn–Midale CO2 monitoring and storage project: International Journal of Greenhouse Gas Control, 16, S95–S102, doi: 10.1016/j.ijggc.2013.01.047.IJGGBW1750-5836CrossrefWeb of ScienceGoogle Scholar
  • Würdemann, H., F. Möller, M. Kühn, G. Borm, and F. Schilling, CO2SINK-Group, 2010, The field-laboratory for CO2 storage “CO2SINK” at Ketzin (Germany): Site preparation, baseline surveys, and the first year of operation: International Journal of Greenhouse Gas Control, 4, 938–951, doi: 10.1016/j.ijggc.2010.08.010.IJGGBW1750-5836CrossrefWeb of ScienceGoogle Scholar
  • Yang, C., C. Juhlin, N. Enescu, C. Cosma, and S. Lüth, 2010, Moving source profile data processing, modelling and comparison with 3D surface seismic data at the CO2SINK project site, Ketzin, Germany: Near Surface Geophysics, 8, 601–610, doi: 10.3997/1873-0604.2010022.1569-4445CrossrefWeb of ScienceGoogle Scholar
  • Yilmaz, Ö., 2001, Seismic data analysis: SEG.AbstractGoogle Scholar