This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.


Marchenko imaging


Traditionally, the Marchenko equation forms a basis for 1D inverse scattering problems. A 3D extension of the Marchenko equation enables the retrieval of the Green’s response to a virtual source in the subsurface from reflection measurements at the earth’s surface. This constitutes an important step beyond seismic interferometry. Whereas seismic interferometry requires a receiver at the position of the virtual source, for the Marchenko scheme it suffices to have sources and receivers at the surface only. The underlying assumptions are that the medium is lossless and that an estimate of the direct arrivals of the Green’s function is available. The Green’s function retrieved with the 3D Marchenko scheme contains accurate internal multiples of the inhomogeneous subsurface. Using source-receiver reciprocity, the retrieved Green’s function can be interpreted as the response to sources at the surface, observed by a virtual receiver in the subsurface. By decomposing the 3D Marchenko equation, the response at the virtual receiver can be decomposed into a downgoing field and an upgoing field. By deconvolving the retrieved upgoing field with the downgoing field, a reflection response is obtained, with virtual sources and virtual receivers in the subsurface. This redatumed reflection response is free of spurious events related to internal multiples in the overburden. The redatumed reflection response forms the basis for obtaining an image of a target zone. An important feature is that spurious reflections in the target zone are suppressed, without the need to resolve first the reflection properties of the overburden.


  • Amundsen, L., 2001, Elimination of free-surface related multiples without need of the source wavelet: Geophysics, 66, 327–341, doi: 10.1190/1.1444912.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Bakulin, A., and R. Calvert, 2006, The virtual source method: Theory and case study: Geophysics, 71, no. 4, SI139–SI150, doi: 10.1190/1.2216190.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Behura, J., K. Wapenaar, and R. Snieder, 2012, Newton-Marchenko-Rose imaging: 82nd Annual International Meeting, SEG, Expanded Abstracts, doi: 10.1190/segam2012-1531.1.AbstractGoogle Scholar
  • Berkhout, A. J., 1997, Pushing the limits of seismic imaging, Part I: Prestack migration in terms of double dynamic focusing: Geophysics, 62, 937–953, doi: 10.1190/1.1444201.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Berkhout, A. J., and D. W. van Wulfften Palthe, 1979, Migration in terms of spatial deconvolution: Geophysical Prospecting, 27, 261–291, doi: 10.1111/j.1365-2478.1979.tb00970.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Berkhout, A. J., and D. J. Verschuur, 1997, Estimation of multiple scattering by iterative inversion. Part I: Theoretical considerations: Geophysics, 62, 1586–1595, doi: 10.1190/1.1444261.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Berkhout, A. J., and D. J. Verschuur, 2001, Seismic imaging beyond depth migration: Geophysics, 66, 1895–1912, doi: 10.1190/1.1487132.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Berkhout, A. J., and D. J. Verschuur, 2011, Full wavefield migration, utilizing surface and internal multiple scattering: 81st Annual International Meeting, SEG, Expanded Abstracts, 3212–3216.AbstractGoogle Scholar
  • Berryhill, J. R., 1979, Wave-equation datuming: Geophysics, 44, 1329–1344, doi: 10.1190/1.1441010.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Berryhill, J. R., 1984, Wave-equation datuming before stack: Geophysics, 49, 2064–2066, doi: 10.1190/1.1441620.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Broggini, F., and R. Snieder, 2012, Connection of scattering principles: A visual and mathematical tour: European Journal of Physics, 33, 593–613, doi: 10.1088/0143-0807/33/3/593.EJPHD40143-0807CrossrefWeb of ScienceGoogle Scholar
  • Broggini, F., R. Snieder, and K. Wapenaar, 2014, Data-driven wave field focusing and imaging with multidimensional deconvolution: Numerical examples for reflection data with internal multiples: Geophysics, 79, no. 3, doi: 10.1190/geo2013-0307.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Brookes, D., 2011, Case studies in 3D interbed multiple elimination: The Leading Edge, 30, 914–918, doi: 10.1190/1.3626499.1070-485XAbstractGoogle Scholar
  • Burridge, R., 1980, The Gelfand-Levitan, the Marchenko, and the Gopinath-Sondhi integral equations of inverse scattering theory, regarded in the context of inverse impulse-response problems: Wave Motion, 2, 305–323, doi: 10.1016/0165-2125(80)90011-6.WAMOD90165-2125CrossrefWeb of ScienceGoogle Scholar
  • Cao, W., S. M. Hanafy, G. T. Schuster, G. Zhan, and C. Boonyasiriwat, 2012, High-resolution and super stacking of time-reversal mirrors in locating seismic sources: Geophysical Prospecting, 60, 1–17, doi: 10.1111/j.1365-2478.2011.00957.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Chadan, K., and P. C. Sabatier, 1989, Inverse problems in quantum scattering theory: Springer.CrossrefGoogle Scholar
  • Curtis, A., P. Gerstoft, H. Sato, R. Snieder, and K. Wapenaar, 2006, Seismic interferometry — Turning noise into signal: The Leading Edge, 25, 1082–1092, doi: 10.1190/1.2349814.1070-485XAbstractGoogle Scholar
  • Curtis, A., and D. Halliday, 2010, Source-receiver wavefield interferometry: Physical Review E, 81, 046601, doi: 10.1103/PhysRevE.81.046601.PLEEE81539-3755CrossrefWeb of ScienceGoogle Scholar
  • de Bruin, C. G. M., C. P. A. Wapenaar, and A. J. Berkhout, 1990, Angle-dependent reflectivity by means of prestack migration: Geophysics, 55, 1223–1234, doi: 10.1190/1.1442938.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • de Hoop, A. T., 1995, Handbook of radiation and scattering of waves: Academic Press.Google Scholar
  • Fink, M., and F. Tanter, 2010, Multiwave imaging and super resolution: Physics Today, 63, no. 2, 28–33, doi: 10.1063/1.3326986.PHTOAD0031-9228CrossrefWeb of ScienceGoogle Scholar
  • Fleury, C., and I. Vasconcelos, 2012, Imaging condition for nonlinear scattering-based imaging: Estimate of power loss in scattering: Geophysics, 77, no. 1, S1–S18, doi: 10.1190/geo2011-0135.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Ge, D. B., 1987, An iterative technique in one-dimensional profile inversion: Inverse Problems, 3, 399–406, doi: 10.1088/0266-5611/3/3/009.INPEEY0266-5611CrossrefWeb of ScienceGoogle Scholar
  • Halliday, D., and A. Curtis, 2010, An interferometric theory of source-receiver scattering and imaging: Geophysics, 75, no. 6, SA95–SA103, doi: 10.1190/1.3486453.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Jakubowicz, H., 1998, Wave equation prediction and removal of interbed multiples: 68th Annual International Meeting, SEG, Expanded Abstracts, 1527–1530.AbstractGoogle Scholar
  • Kinneging, N. A., V. Budejicky, C. P. A. Wapenaar, and A. J. Berkhout, 1989, Efficient 2D and 3D shot record redatuming: Geophysical Prospecting, 37, 493–530, doi: 10.1111/j.1365-2478.1989.tb02220.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Lamb, G. L., 1980, Elements of soliton theory: John Wiley and Sons, Inc.Google Scholar
  • Lerosey, G., J. de Rosny, A. Tourin, and M. Fink, 2007, Focusing beyond the diffraction limit with far-field time reversal: Science, 315, 1120–1122, doi: 10.1126/science.1134824.SCIEAS0036-8075CrossrefWeb of ScienceGoogle Scholar
  • Marchenko, V. A., 1955, Reconstruction of the potential energy from the phases of the scattered waves: Doklady Akademii Nauk SSSR, 104, 695–698 (in Russian).DANKAS0002-3264Google Scholar
  • Mehta, K., A. Bakulin, J. Sheiman, R. Calvert, and R. Snieder, 2007, Improving the virtual source method by wavefield separation: Geophysics, 72, no. 4, V79–V86, doi: 10.1190/1.2733020.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Poliannikov, O. V., 2011, Retrieving reflections by source-receiver wavefield interferometry: Geophysics, 76, no. 1, SA1–SA8, doi: 10.1190/1.3524241.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Poliannikov, O. V., S. Rondenay, and L. Chen, 2012, Interferometric imaging of the underside of a subducting crust: Geophysical Journal International, 189, 681–690, doi: 10.1111/j.1365-246X.2012.05389.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Ravasi, M., and A. Curtis, 2013, Nonlinear scattering based imaging in elastic media: Theory, theorems, and imaging conditions: Geophysics, 78, no. 3, S137–S155, doi: 10.1190/geo2012-0286.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Sava, P. C., and S. Fomel, 2003, Angle-domain common-image gathers by wavefield continuation methods: Geophysics, 68, 1065–1074, doi: 10.1190/1.1581078.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Schuster, G. T., and M. Zhou, 2006, A theoretical overview of model-based and correlation-based redatuming methods: Geophysics, 71, no. 4, SI103–SI110, doi: 10.1190/1.2208967.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Slob, E., K. Wapenaar, F. Broggini, and R. Snieder, 2014, Seismic reflector imaging using internal multiples with Marchenko-type equations: Geophysics, 79, no. 2, S63–S76, doi: 10.1190/geo2013-0095.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Snieder, R., K. Wapenaar, and K. Larner, 2006, Spurious multiples in seismic interferometry of primaries: Geophysics, 71, no. 4, SI111–SI124, doi: 10.1190/1.2211507.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Ten Kroode, F., 2002, Prediction of internal multiples: Wave Motion, 35, 315–338, doi: 10.1016/S0165-2125(01)00109-3.WAMOD90165-2125CrossrefWeb of ScienceGoogle Scholar
  • van der Neut, J., E. Slob, K. Wapenaar, J. Thorbecke, R. Snieder, F. Broggini, J. Behura, and S. Singh, 2013, Interferometric redatuming of autofocused primaries and internal multiples: 83rd Annual International Meeting, SEG, Expanded Abstracts, 4589–4594.AbstractGoogle Scholar
  • van der Neut, J., J. Thorbecke, K. Mehta, E. Slob, and K. Wapenaar, 2011, Controlled-source interferometric redatuming by crosscorrelation and multidimensional deconvolution in elastic media: Geophysics, 76, no. 4, SA63–SA76, doi: 10.1190/1.3580633.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • van Groenestijn, G. J. A., and D. J. Verschuur, 2009, Estimation of primaries and near-offset reconstruction by sparse inversion: Marine data applications: Geophysics, 74, no. 6, R119–R128, doi: 10.1190/1.3213532.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Vasconcelos, I., 2013, Source-receiver, reverse-time imaging of dual-source, vector-acoustic seismic data: Geophysics, 78, no. 2, WA123–WA145, doi: 10.1190/geo2012-0300.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Verschuur, D. J., A. J. Berkhout, and C. P. A. Wapenaar, 1992, Adaptive surface-related multiple elimination: Geophysics, 57, 1166–1177, doi: 10.1190/1.1443330.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, 74, no. 6, WCC1–WCC26, doi: 10.1190/1.3238367.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Wapenaar, C. P. A., and A. J. Berkhout, 1989, Elastic wave field extrapolation: Elsevier.Google Scholar
  • Wapenaar, K., J. Fokkema, M. Dillen, and P. Scherpenhuijsen, 2000, One-way acoustic reciprocity and its applications in multiple elimination and time-lapse seismics: 70th Annual International Meeting, SEG, Expanded Abstracts, 2377–2380.AbstractGoogle Scholar
  • Wapenaar, K., J. Thorbecke, J. van der Neut, F. Broggini, E. Slob, and R. Snieder, 2014, Green’s function retrieval from reflection data, in absence of a receiver at the virtual source position: Journal of the Acoustical Society of America, 134, doi: 10.1121/1.4869083.JASMAN0001-4966CrossrefWeb of ScienceGoogle Scholar
  • Wapenaar, K., J. Thorbecke, J. van der Neut, E. Slob, F. Broggini, J. Behura, and R. Snieder, 2012, Integrated migration and internal multiple elimination: 82nd Annual International Meeting, SEG, Expanded Abstracts, SPMUL 1.5.AbstractGoogle Scholar
  • Weglein, A. B., F. A. Gasparotto, P. M. Carvalho, and R. H. Stolt, 1997, An inverse-scattering series method for attenuating multiples in seismic reflection data: Geophysics, 62, 1975–1989, doi: 10.1190/1.1444298.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Weglein, A. B., S. Y. Hsu, P. Terenghi, X. Li, and R. H. Stolt, 2011, Multiple attenuation: Recent advances and the road ahead (2011): The Leading Edge, 30, 864–875, doi: 10.1190/1.3626494.1070-485XAbstractGoogle Scholar
  • Williams, E. G., and J. D. Maynard, 1980, Holographic imaging without the wavelength resolution limit: Physical Review Letters, 45, 554–557, doi: 10.1103/PhysRevLett.45.554.PRLTAO0031-9007CrossrefWeb of ScienceGoogle Scholar