This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×
On Tuesday, 28 May 2024, from 1:00 am CDT to 1:00 pm CDT, the SEG Library will undergo a major site upgrade. During this time, users will be able to access their accounts, but certain features may be unavailable. We apologize for the inconvenience.

Combination of seismic reflection and constrained resistivity inversion with an application to 4D imaging of the CO2 storage site, Ketzin, Germany

Authors:

A combination of seismic and geoelectric processing was studied by means of a structurally constrained inversion approach. Structural constraints were interpreted from the seismic data and integrated into the geoelectric inversion through a local regularization, which allowed inverted resistivities to behave discontinuously across defined boundaries. This arranged seismic processing and constrained resistivity inversion in a sequential workflow, making the generic assumption that the petrophysical parameters of both methods change across common lithostructural boundaries. We evaluated the approach using a numerical example and a real data example from the Ketzin CO2 pilot storage site, Germany. The latter demonstrated the efficiency of this approach for combining 4D seismic and surface-downhole geoelectric data. In consistence with the synthetic example, the constrained resistivity inversions produced clearer delineated images along the boundary between caprock and reservoir formation. Near the CO2-flooded reservoir, the seismic and geoelectric time-lapse anomalies correlated well. At some distance to the downhole electrodes, however, the geoelectric images conveyed a notably lower resolution in comparison to the corresponding seismic images. Both methods confirm a northwesterly trend for the CO2 migration at the Ketzin site, although a rather northerly direction was initially expected. The results demonstrate the relevance of the presented approach for the combination of both methods for integrated geophysical CO2 storage monitoring.

REFERENCES

  • al Hagrey, S.A., 2011, CO2 plume modeling in deep saline reservoirs by 2D ERT in boreholes: The Leading Edge, 30, 24–33, doi: 10.1190/1.3535429.1070-485XAbstractGoogle Scholar
  • Backus, G. E., 1988, Comparing hard and soft prior bounds in geophysical inverse problems: Geophysical Journal, 94, 249–261, doi: 10.1111/j.1365-246X.1988.tb05899.xGJOUDQ0275-9128.CrossrefGoogle Scholar
  • Bergmann, P., U. Lengler, C. Schmidt-Hattenberger, R. Giese, and B. Norden, 2010, Modelling the geoelectric and seismic reservoir response caused by carbon dioxide injection based on multiphase flow simulation: Results from the CO2SINK project: Chemie der Erde — Geochemistry, 70, 173–183.CrossrefWeb of ScienceGoogle Scholar
  • Bergmann, P., C. Schmidt-Hattenberger, D. Kiessling, C. Rücker, T. Labitzke, J. Henninges, G. Baumann, and H. Schütt, 2012, Surface-downhole electrical resistivity tomography applied to monitoring of the CO2 storage Ketzin (Germany): Geophysics, 77, no. 6, B253–B267, doi: 10.1190/geo2011-0515.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Bergmann, P., C. Yang, S. Lüth, C. Juhlin, and C. Cosma, 2011, Time-lapse processing of 2D seismic profiles with testing of static correction methods at the CO2 injection site Ketzin (Germany): Journal of Applied Geophysics, 75, no. 1, 124–139, doi: 10.1016/j.jappgeo.2011.05.005.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Beutler, G., N. Hauschke, and E. Nitsch, 1999, Faziesentwicklung des Keupers im Germanischen Becken, in Hauschke, N.V. Wilde, eds., Trias, eine ganz andere Welt. München: Verlag Dr. Friedrich Pfeil, 129–173 (in German).Google Scholar
  • Beutler, G., and E. Nitsch, 2005, in Paläographischer Überblick, Stratigraphie von Deutschland IV, edited by Beutler, G., chapter Keuper, Cour. Forsch.-Inst. Senckenberg, 253 (in German).Google Scholar
  • Chadwick, A., R. Arts, C. Bernstone, F. May, S. Thibeau, and P. Zweigel, 2008, Best practice for the storage of CO2 in saline aquifers — observations and guidelines from the SACS and CO2STORE projects. Nottingham, UK, British Geological Survey, 267 (British Geological Survey Occasional Publication, 14), http://nora.nerc.ac.uk/2959/, accessed 15 November 2012.Google Scholar
  • Doetsch, J., N. Linde, M. Pessognelli, A. G. Green, and T. Günther, 2012, Constraining 3-D electrical resistance tomography with GPR data for improved aquifer characterization: Journal of Applied Geophysics, 78, 68–76, doi: 10.1016/j.jappgeo.2011.04.008.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Favetto, A., C. Pomposiello, J. Booker, and E. A. Rossello, 2007, Magnetotelluric inversion constrained by seismic data in the Tucuman basin (Andean foothills, 27 degrees S,NW Argentina): Journal of Geophysical Research Solid Earth : JGR, 112, B09104, doi: 10.1029/2006JB004455.JGEREE0148-0227CrossrefWeb of ScienceGoogle Scholar
  • Förster, A., B. Norden, K. Zinck-Jłrgensen, P. Frykman, J. Kulenkampff, E. Spangenberg, J. Erzinger, M. Zimmer, J. Kopp, G. Borm, C. Juhlin, C. Cosma, and H. Suzanne, 2006, Baseline characterization of the CO2SINK geological storage site at Ketzin, Germany: Environmental Geosciences, 13, 145–161, doi: 10.1306/eg.02080605016.1075-9565CrossrefGoogle Scholar
  • Förster, A., R. Schöner, H. Förster, B. Norden, A. Blaschke, J. Luckert, G. Beutler, R. Gaupp, and D. Rhede, 2010, Reservoir characterization of a CO2 storage aquifer: The upper triassic Stuttgart Formation in the Northeast German Basin: Marine and Petroleum Geology, 27, 2156–2172, doi: 10.1016/j.marpetgeo.2010.07.010.MPEGD80264-8172CrossrefWeb of ScienceGoogle Scholar
  • Förster, A., N. Springer, G. Beutler, J. Luckert, B. Norden, and H. Lindgren, 2007, The mudstone-dominated caprock system of the CO2-storage site at Ketzin, Germany: Proceedings of the 2007 AAPG Annual Convention and Exhibition.Google Scholar
  • Friedel, S., 2003, Resolution, stability and efficiency of resistivity tomography estimated from a generalized inverse approach: Geophysical Journal International, 153, 305–316, doi: 10.1046/j.1365-246X.2003.01890.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Gholami, A., and H. R. Siahkoohi, 2009, Simultaneous constraining of model and data smoothness for regularization of geophysical inverse problems: Geophysical Journal International, 176, 151–163, doi: 10.1111/j.1365-246X.2008.03949.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Giese, R., J. Henninges, S. Lüth, D. Morozova, C. Schmidt-Hattenberger, H. Würdemann, M. Zimmer, C. Cosma, and Ch. Juhlin and CO2SINK Group 2009. Monitoring at the CO2SINK site: A concept integrating geophysics, geochemistry and microbiology: Energy Procedia, 1, no. 1, 2251–2259, doi: 10.1016/j.egypro.2009.01.293.EPNRCV1876-6102CrossrefGoogle Scholar
  • Götz, J., R. Giese, S. Lüth, C. Schmidt-Hattenberger, C. Juhlin, and C. Cosma, 2011, Borehole seismic monitoring of CO2 storage within a saline aquifer at Ketzin, Germany: EAGE Borehole Geophysics Workshop — Emphasis on 3D VSP, EarthDoc-47183.Google Scholar
  • Günther, T., C. Rücker, and K. Spitzer, 2006, Three-dimensional modelling and inversion of dc resistivity data incorporating topography — II. Inversion: Geophysical Journal International, 166, 506–517, doi: 10.1111/j.1365-246X.2006.03011.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Günther, T., G. Schaumann, P. Musmann, and M. Grinat, 2011, Imaging of a fault zone by a large-scale DC resistivity experiment and seismic structural information: Near Surface 2011 — The 17th European Meeting of Environmental and Engineering Geophysics, Extended Abstracts.CrossrefGoogle Scholar
  • Hansen, P. C., and D.P. O’Leary, 1993, The use of the L-curve in the regularization of discrete ill-posed problems: SIAM Journal on Scientific Computing, 14, 1487–1503, doi: 10.1137/0914086.SJOCE31064-8275CrossrefWeb of ScienceGoogle Scholar
  • Hare, J., J. Ferguson, and J. Brady, 2008, The 4D microgravity method for waterflood surveillance: Part IV — Modeling and interpretation of early epoch 4D gravity surveys at Prudhoe Bay, Alaska: Geophysics, 73, no 6, WA173–WA180, doi: 10.1190/1.2991120.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Ivandic, M., C. Yang, S. Lüth, C. Cosma, and C. Juhlin, 2012, Time-lapse analysis of sparse 3D seismic data from the CO2 storage pilot site at Ketzin, Germany: Journal of Applied Geophysics, 84, 14–28, doi: 10.1016/j.jappgeo.2012.05.010.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Ivanova, A., A. Kashubin, N. Juhojuntti, J. Kummerow, J. Henninges, C. Juhlin, S. Lüth, and M. Ivandic, 2012, Monitoring and volumetric estimation of injected CO2 using 4D seismic, petrophysical data, core measurements and well logging: A case study at Ketzin, Germany: Geophysical Prospecting, 60, 957–973, doi: 10.1111/j.1365-2478.2012.01045.xGPPRAR0016-8025.CrossrefWeb of ScienceGoogle Scholar
  • Jegen, M. D., R.W. Hobbs, P. Tarits, and A. Chave, 2009, Joint inversion of marine magnetotelluric and gravity data incorporating seismic constraints: Preliminary results of sub-basalt imaging off the Faroe Shelf: Earth and Planetary Science Letters, 282, 47–55, doi: 10.1016/j.epsl.2009.02.018.EPSLA20012-821XCrossrefWeb of ScienceGoogle Scholar
  • Juhlin, C., R. Giese, K. Zinck-Jłrgensen, C. Cosma, H. Kazemeini, N. Juhojuntti, S. Lüth, B. Norden, and A. Förster, 2007, 3D baseline seismics at Ketzin, Germany: The CO2SINK project: Geophysics, 72, no. 5, B121–B132, doi: 10.1190/1.2754667.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Kashubin, A., C. Juhlin, A. Malehmir, S. Lüth, A. Ivanova, and N. Juhojuntti, 2011, A footprint of rainfall on land seismic data repeatability at the CO2 storage pilot site, Ketzin, Germany: 81st Annual International Meeting, SEG, Expanded Abstracts, 4165–4169.Google Scholar
  • Kazemeini, H., C. Yang, C. Juhlin, S. Fomel, and C. Cosma, 2010a, Enhancing seismic data resolution using the pre-stack blueing technique: An example from the Ketzin CO2 injection site, Germany: Geophysics, 75, no. 6, V101–V110, doi: 10.1190/1.3483900.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Kazemeini, S. H., C. Juhlin, and S. Fomel, 2010b, Monitoring CO2 response on surface seismic data; a rock physics and seismic modeling feasibility study at the CO2 sequestration site, Ketzin, Germany: Journal of Applied Geophysics, 71, 109–124, doi: 10.1016/j.jappgeo.2010.05.004.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Kazemeini, S. H., C. Juhlin, K. Zinck-Jłrgensen, and B. Norden, 2009, Application of the continuous wavelet transform on seismic data for mapping of channel deposits and gas detection at the CO2SINK site, Ketzin, Germany: Geophysical Prospecting, 57, 111–123, doi: 10.1111/j.1365-2478.2008.00723.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Kiessling, D., C. Schmidt-Hattenberger, H. Schütt, F. Schilling, K. Krüger, B. Schöbel, E. Danckwardt, and J. Kummerowand the CO2SINK Group 2010, Geoelectrical methods for monitoring geological CO2 storage: First results from cross-hole and surface-downhole measurements from the CO2SINK test site at Ketzin (Germany): International Journal of Greenhouse Gas Control, 4, no. 5, 816–826, doi: 10.1016/j.ijggc.2010.05.001.IJGGBW1750-5836CrossrefWeb of ScienceGoogle Scholar
  • Kling, C., 2011, Structural interpretation and application of spectral decomposition for facies analysis of three-dimensional reflection seismic data at the Ketzin CO2 storage site: Master thesis, Technical University Berlin, Institute of Applied Geosciences, FG Exploration Geology.Google Scholar
  • Kummerow, J., and E. Spangenberg, 2011, Experimental evaluation of the impact of the interactions of CO2-SO2, brine, and reservoir rock on petrophysical properties: A case study from the Ketzin test site, Germany: Geochemistry, Geophysics, Geosystems, 12, Q05010, doi: 10.1029/2010GC003469.GGGGFR1525-2027CrossrefWeb of ScienceGoogle Scholar
  • Loke, M. H., and R. D. Barker, 1995, Least squares deconvolution of apparent resistivity pseudosections: Geophysics, 60, 1682–1690, doi: 10.1190/1.1443900.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Lüth, S., P. Bergmann, C. Cosma, N. Enescu, R. Giese, J. Götz, A. Ivanova, C. Juhlin, A. Kashubin, C. Yang, and F. Zhang, 2011, Time-lapse seismic surface and down-hole measurements for monitoring CO2 storage in the CO2SINK project (Ketzin, Germany): Energy Procedia, 4, 3435–3442, doi: 10.1016/j.egypro.2011.02.268.EPNRCV1876-6102CrossrefGoogle Scholar
  • Martens, S., A. Liebscher, F. Möller, H. Würdemann, F. Schilling, and M. Kühnand Ketzin Group2011, Progress report on the first European on-shore CO2 storage site at Ketzin (Germany) — Second year of injection: Energy Procedia, 4, 3246–3253, doi: 10.1016/j.egypro.2011.02.243.EPNRCV1876-6102CrossrefGoogle Scholar
  • NETL 2009, Best practices for: Monitoring, verification, and accounting of CO2 stored in deep geologic formations: National energy technology laboratory, USA, http://www.netl.doe.gov/technologies/carbon_seq/refshelf/MVA_Document.pdf, accessed 15 November 2012.Google Scholar
  • Norden, B., A. Förster, D. Vu-Hoang, F. Marcelis, N. Springer, and I. Le Nir, 2010, Lithological and petrophysical core-log interpretation in CO2SINK, the European CO2 onshore research storage and verification project: SPE Reservoir Evaluation & Engineering, 13, no. 2, 179–192, doi: 10.2118/115247-PA.SREEFG1094-6470CrossrefWeb of ScienceGoogle Scholar
  • Olayinka, A. I., and U. Yaramanci, 2000, Use of block inversion in the 2-D interpretation of apparent resistivity data and its comparison with smooth inversion: Journal of Applied Geophysics, 45, no. 2, 63–81, doi: 10.1016/S0926-9851(00)00019-7.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Pedersen, L. B., 1979, Constrained inversion of potential field data: Geophysical Prospecting, 27, 726–748, doi: 10.1111/j.1365-2478.1979.tb00993.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Portniaguine, O., and M. S. Zhdanov, 1999, Focusing geophysical inversion images: Geophysics, 64, 874–887, doi: 10.1190/1.1444596.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Pous, J., A. Marcuello, and P. Queralt, 1987, Resistivity inversion with a priori information: Geophysical Prospecting, 35, 590–603, doi: 10.1111/j.1365-2478.1987.tb00837.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Rücker, C., T. Günther, and K. Spitzer, 2006, Three-dimensional modelling and inversion of dc resistivity data incorporating topography — I. Modeling: Geophysical Journal International, 166, 495–505, doi: 10.1111/j.1365-246X.2006.03010.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Saunders, J. H., J.V. Herwanger, C. C. Pain, M.H. Worthington, and C.R.E. De Oliveira, 2005, Constrained resistivity inversion using seismic data: Geophysical Journal International, 160, 785–796, doi: 10.1111/j.1365-246X.2005.02566.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Schilling, F., G. Borm, H. Würdemann, F. Möller, and M. Kühn, 2009, Status report on the first European on-shore CO2 storage site at Ketzin (Germany): Energy Procedia, 1, no. 1, 2029–2035, doi: 10.1016/j.egypro.2009.01.264.EPNRCV1876-6102CrossrefGoogle Scholar
  • Schmidt-Hattenberger, C., P. Bergmann, D. Kiessling, K. Krüger, C. Rücker, and H. Schüttand Ketzin Group, 2011, Application of a vertical electrical resistivity array (VERA) for monitoring CO2 migration at the Ketzin site: First performance evaluation: Energy Procedia, 4, 3363–3370, doi: 10.1016/j.egypro.2011.02.258.EPNRCV1876-6102CrossrefGoogle Scholar
  • Schmidt-Hattenberger, C., P. Bergmann, T. Labitzke, S. Schröder, K. Krüger, C. Rücker, and H. Schütt, 2012, A modular geoelectrical monitoring system as part of the surveillance concept in CO2 storage projects: Energy Procedia, 23, 400–407, doi: 10.1016/j.egypro.2012.06.062.EPNRCV1876-6102CrossrefGoogle Scholar
  • Si, H., 2008, Adaptive tetrahedral mesh generation by constrained Delaunay refinement: International Journal for Numerical Methods in Engineering, 75, 856–880, doi: 10.1002/nme.2318.IJNMBH0029-5981CrossrefWeb of ScienceGoogle Scholar
  • Yang, C., 2012, Time-lapse analysis of borehole and surface seismic data, and reservoir characterization of the Ketzin CO2 Storage Site, Germany. Acta Universitatis Upsaliensis: Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology.Google Scholar
  • Yang, C., C. Juhlin, N. Enescu, S. Lüth, and C. Cosma, 2010, Moving source profile (MSP) data processing, modeling and comparison with 3D surface seismic data at the CO2SINK project site, Ketzin, Germany: Near Surface Geophysics, 8, 601–610.1569-4445CrossrefWeb of ScienceGoogle Scholar
  • Yordkayhun, S., C. Juhlin, and B. Norden, 2009, 3D seismic reflection surveying at the CO2SINK project site, Ketzin, Germany: A study for extracting shallow subsurface information: Near Surface Geophysics, 7, 75–91.1569-4445CrossrefWeb of ScienceGoogle Scholar
  • Zhang, F., C. Juhlin, C. Cosma, A. Tryggvason, and R. G. Pratt, 2012, Cross-well seismic waveform tomography for monitoring CO2 injection: A case study from the Ketzin Site, Germany: Geophysical Journal International, 189, 629–646, doi: 10.1111/j.1365-246X.2012.05375.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Zimmer, M., J. Erzinger, and C. Kujawa and CO2SINK-Group 2011, The gas membrane sensor (GMS): A new method for gas measurements in deep boreholes applied at the CO2SINK site: International Journal of Greenhouse Gas Control, 5, no. 4, 995–1001, doi: 10.1016/j.ijggc.2010.11.007.IJGGBW1750-5836CrossrefWeb of ScienceGoogle Scholar