This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

We present an imaging method that creates a map of reflection coefficients in correct one-way time with no contamination from internal multiples using purely a filtering approach. The filter is computed from the measured reflection response and does not require a background model. We demonstrate that the filter is a focusing wavefield that focuses inside a layered medium and removes all internal multiples between the surface and the focus depth. The reflection response and the focusing wavefield can then be used for retrieving virtual vertical seismic profile data, thereby redatuming the source to the focus depth. Deconvolving the upgoing by the downgoing vertical seismic profile data redatums the receiver to the focus depth and gives the desired image. We then show that, for oblique angles of incidence in horizontally layered media, the image of the same quality as for 1D waves can be constructed. This step can be followed by a linear operation to determine velocity and density as a function of depth. Numerical simulations show the method can handle finite frequency bandwidth data and the effect of tunneling through thin layers.

REFERENCES

  • Agranovich, Z. S., and V. A. Marchenko, 1963, The inverse problem of scattering theory: Gordon and Breach.
  • Broggini, F., and R. Snieder, 2012, Connection of scattering principles: A visual and mathematical tour: European Journal of Physics, 33, 593–613, doi: 10.1088/0143-0807/33/3/593.EJPHD40143-0807
  • Broggini, F., R. Snieder, and K. Wapenaar, 2012, Focusing the wavefield inside an unknown 1D medium: Beyond seismic interferometry: Geophysics, 77, no. 5, A25–A28, doi: 10.1190/geo2012-0060.1.GPYSA70016-8033
  • Burridge, R., 1980, The Gelfand-Levitan, the Marchenko, and the Gopinath-Sondhi integral equations of inverse scattering theory, regarded in the context of inverse impulse response problems: Wave Motion, 2, 305–323, doi: 10.1016/0165-2125(80)90011-6.WAMOD90165-2125
  • Coen, S., 1981, The inverse problem of the shear modulus and density profiles of a layered earth: Journal of Geophysical Research, 86, 6052–6056, doi: 10.1029/JB086iB07p06052.JGREA20148-0227
  • de Hoop, A. T., 1995, Handbook of radiation and scattering of waves: Academic Press.
  • Goupillaud, P. L., 1961, An approach to inverse filtering of near surface effects from seismic records: Geophysics, 26, 754–760, doi: 10.1190/1.1438951.GPYSA70016-8033
  • Jakubowicz, H., 1998, Wave equation prediction and removal of interbed multiples: 68th Annual International Meeting, SEG, Expanded Abstracts, 1527–1530.
  • Lamb, G. L., 1980, Elements of Soliton theory: John Wiley & Sons Inc.
  • Newton, R. G., 1981, Inversion of reflection data for layered media: A review of exact methods: Geophysical Journal of the Royal Astronomical Society, 65, 191–215, doi: 10.1111/j.1365-246X.1981.tb02708.x.GEOJAN0016-8009
  • Raz, S., 1981, Direct reconstruction of velocity and density profiles from scattered field data: Geophysics, 46, 832–836, doi: 10.1190/1.1441220.GPYSA70016-8033
  • Rose, J. H., 2002, Single-sided autofocusing of sound in layered materials: Inverse Problems, 18, 1923–1934, doi: 10.1088/0266-5611/18/6/329.INPEEY0266-5611
  • ten Kroode, F., 2002, Prediction of internal multiples: Wave Motion, 35, 315–338, doi: 10.1016/S0165-2125(01)00109-3.WAMOD90165-2125
  • van Dedem, E. J., and D. J. Verschuur, 2005, 3D surface-related multiple prediction: A sparse inversion approach: Geophysics, 70, V31–V43, doi: 10.1190/1.1925752.GPYSA70016-8033
  • van der Neut, J., E. Slob, K. Wapenaar, J. Thorbecke, R. Snieder, F. Broggini, J. Behura, and S. Singh, 2013, Interferometric redatuming of autofocused primaries and internal multiples: 83rd Annual International Meeting, SEG, Expanded Abstracts, 4589–4594.
  • van der Neut, J., J. Thorbecke, K. Mehta, E. Slob, and K. Wapenaar, 2011, Controlled-source interferometric redatuming by crosscorrelation and multidimensional deconvolution in elastic media: Geophysics, 76, no. 4, SA63–SA76, doi: 10.1190/1.3580633.GPYSA70016-8033
  • Verschuur, D. J., A. J. Berkhout, and C. P. A. Wapenaar, 1992, Adaptive surface-related multiple elimination: Geophysics, 57, 1166–1177, doi: 10.1190/1.1443330.GPYSA70016-8033
  • Wapenaar, C. P. A., and A. J. Berkhout, 1989, Elastic wave field extrapolation: Redatuming of single- and multi-component seismic data: Elsevier Science Publishers, Advances in exploration geophysics.
  • Wapenaar, K., F. Broggini, E. Slob, and R. Snieder, 2013a, Three-dimensional single-sided Marchenko inverse scattering, data-driven focusing, Green’s function retrieval, and their mutual relations: Physical Review Letters, 110, 084301, doi: 10.1103/PhysRevLett.110.084301.PRLTAO0031-9007
  • Wapenaar, K., F. Broggini, and R. Snieder, 2012, Creating a virtual source inside a medium from reflection data: Heuristic derivation and stationary-phase analysis: Geophysical Journal International, 190, 1020–1024, doi: 10.1111/j.1365-246X.2012.05551.x.GJINEA0956-540X
  • Wapenaar, K., E. Slob, J. van der Neut, J. Thorbecke, F. Broggini, and R. Snieder, 2013b, Three-dimensional Marchenko equation for Green’s function retrieval “beyond seismic interferometry”: 83rd Annual International Meeting, SEG, Expanded Abstracts, 4573–4578.
  • Ware, J. A., and K. Aki, 1969, Continuous and discrete inverse-scattering problems in a stratified elastic medium. I. Plane waves at normal incidence: Journal of the Acoustical Society of America, 45, 911–921, doi: 10.1121/1.1911568.JASMAN0001-4966
  • Weglein, A. B., F. Liu, X. Li, P. Terenghi, E. Kragh, J. D. Mayhan, Z. Wang, J. Mispel, L. Amundsen, H. Liang, L. Tang, and S.-Y. Hsu, 2012, Inverse scattering series direct depth imaging without the velocity model: First field data examples: Journal of Seismic Exploration, 21, 1–28.0963-0651
  • Zhang, H., and A. B. Weglein, 2009, Direct nonlinear inversion of multiparameter 1D elastic media using the inverse scattering series: Geophysics, 74, no. 6, WCD15–WCD27, doi: 10.1190/1.3256283.GPYSA70016-8033