This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Simulated electrical conductivity response of clogging mechanisms for managed aquifer recharge

Authors:

Motivated by the need for improved understanding and monitoring of clogging during managed aquifer recharge, we use numerical experiments to evaluate the effect of three different clogging mechanisms on electrical conductivity (EC), porosity, specific surface area, and electrical tortuosity of a simulated sediment pack. The clogging experiments are designed to simulate effect of clogging due to: (a) addition of finer grains, (b) addition of nonconductive films, and (c) addition of conductive films. The simulations involved starting with a random grain pack of 43% porosity, and subsequently reducing the porosity as would occur during clogging. For each of the experiments, we compute the EC response, specific surface area, and electrical tortuosity across the range of porosities. The differences in EC response between (a) and (b) is minor, however, the sediment parameters measuring pore-space configuration show very different responses (i.e., specific surface area and tortuosity), indicating EC is limited in its sensitivity to specific pore configurations. The results from simulations (a) and (b) are well described by Archie’s equation. For the conductive film experiments (c), we explore the effect of film growth for four different surface conductivities ranging from 1Sm1 to 7Sm1. These conductivities correspond to a range of 5–35 times more conductive than the pore fluid conductivity. The bulk EC signal for each of the films results in a distinct manifestation in terms of measured bulk EC. We fit the EC response of the conductive film experiments with a model based on volume fraction occupied by the film; although the model fit the observed results, we required a unique set of fitting parameters for each Film conductivity.

REFERENCES

  • Al Hagrey, S. A., 2012, 2D optimized electrode arrays for borehole resistivity tomography and CO2 sequestration modelling: Pure and Applied Geophysics, 169, 1283–1292, doi: 10.1007/s00024-011-0369-0.PAGYAV0033-4553CrossrefWeb of ScienceGoogle Scholar
  • Archie, G. E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics: Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 146, no. 99, 54–62.TAIMAF0096-4778Google Scholar
  • Arns, C. H., M. A. Knackstedt, W. V. Pinczewski, and E. J. Garboczi, 2002, Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment: Geophysics, 67, 1396–1405, doi: 10.1190/1.1512785.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Atekwana, E. A., and D. D. Werkema, 2006, Biogeophysics: The effects of microbial processes on geophysical properties of the shallow subsurface, in Vereecken, H.A. BinleyG. CassianiA. RevilK. Titov, eds., Applied hydrogeophysics, vol. 71: Springer, 161–193.CrossrefGoogle Scholar
  • Azar, J., A. Javaherian, M. Pishvaie, and M. Nabibidhendi, 2008, An approach to defining tortuosity and cementation factor in carbonate reservoir rocks: Journal of Petroleum Science and Engineering, 60, no. 2, 125–131, doi: 10.1016/j.petrol.2007.05.010.JPSEE60920-4105CrossrefWeb of ScienceGoogle Scholar
  • Blunt, M. J., B. Bijeljic, H. Dong, O. Gharbi, S. Iglauer, P. Mostaghimi, A. Paluszny, and C. Pentland, 2013, Pore-scale imaging and modeling: Advances in Water Resources, 51, 197–216, doi: 10.1016/j.advwatres.2012.03.003.AWREDI0309-1708CrossrefWeb of ScienceGoogle Scholar
  • Bouwer, H., 2002, Artificial recharge of groundwater: Hydrogeology and engineering: Hydrogeology Journal, 10, 121–142, doi: 10.1007/s10040-001-0182-4.HJYOAW1431-2174CrossrefWeb of ScienceGoogle Scholar
  • Boving, T. B., and P. Grathwohl, 2001, Tracer diffusion coefficients in sedimentary rocks: Correlation to porosity and hydraulic conductivity: Journal of Contaminant Hydrology, 53, no. 1–2, 85–100, doi: 10.1016/S0169-7722(01)00138-3.JCOHE60169-7722CrossrefWeb of ScienceGoogle Scholar
  • Carman, P. C., 1937, Fluid flow through granular beds: Transactions of the Institution of Chemical Engineers, 15, 150–167.TICEAH0371-7496Google Scholar
  • Deutsch, C., 1989, Calculating effective absolute permeability in sandstone/shale sequences: SPE formation evaluation: An official publication of the Society of Petroleum Engineers, 4, no. 3, 343–348, doi: 10.2118/17264-PA.SFEVEG0885-923XCrossrefGoogle Scholar
  • Dvorkin, J., M. Armbruster, C. Baldwin, Q. Fang, N. Derzhi, C. Gomez, B. Nur, N. Amos, and Y. Mu, 2008, The future of rock physics: Computational methods vs. lab testing: First Break, 26, 63–68.0263-5046CrossrefGoogle Scholar
  • Dvorkin, J., and A. Nur, 2009, Scale of experiment and rock physics trends: The Leading Edge, 28, 110–115, doi: 10.1190/1.3064155.1070-485XAbstractGoogle Scholar
  • Frohlich, R. K., and C. D. Parke, 1989, The electrical resistivity of the vadose zone — Field survey: Ground Water, 27, 524–530, doi: 10.1111/j.1745-6584.1989.tb01973.x.GRWAAP0017-467XCrossrefWeb of ScienceGoogle Scholar
  • Hjelmeland, O., B. G. Tjetland, B. A. Ardø, L. Bolle, Å. Scheie, and C. Venturini, 1998, A new method for stabilization of friable and unconsolidated core samples at well-site: Journal of Petroleum Science and Engineering, 19, no. 1–2, 7–19, doi: 10.1016/S0920-4105(97)00031-4.JPSEE60920-4105CrossrefWeb of ScienceGoogle Scholar
  • Jackson, P. D., D. T. Smith, and P. N. Stanford, 1978, Resistivity, porosity particle shape relationships for marine sands: Geophysics, 43, no. 6, 1250–1268, doi: 10.1190/1.1440891.SIMUA21942-2156AbstractWeb of ScienceGoogle Scholar
  • Jodrey, W. S., and E. M. Tory, 1979, Simulation of random packing of spheres: Simulation, 32, no. 1, 1–12, doi: 10.1177/003754977903200102.SIMUA20037-5497CrossrefGoogle Scholar
  • Johnson, D. L., D. L. Hemmick, and H. Kojima, 1994, Probing porous media with first and second sound. I. Dynamic permeability: Journal of Applied Physics, 76, 104–114, doi: 10.1063/1.357116.JAPIAU0021-8979CrossrefWeb of ScienceGoogle Scholar
  • Keehm, Y., and T. Mukerji, 2004, Permeability and relative permeability from digital rocks: Issues on grid resolution and representative elementary volume: 74th Annual International Meeting, SEG, Expanded Abstracts, 1–4.AbstractGoogle Scholar
  • Keehm, Y., T. Mukerji, and A. Nur, 2001, Computational rock physics at the pore scale: Transport properties and diagenesis in realistic pore geometries: The Leading Edge, 20, 180–183, doi: 10.1190/1.1438904.1070-485XAbstractGoogle Scholar
  • Knackstedt, M. A., S. Latham, M. Madadi, A. Sheppard, T. Varslot, and C. Arns, 2009, Digital rock physics: 3D imaging of core material and correlations to acoustic and flow properties: The Leading Edge, 28, 28–33, doi: 10.1190/1.3064143.1070-485XAbstractGoogle Scholar
  • Knight, R. J., and A. Nur, 1987, The dielectric constant of sandstones, 60 kHz to 4 MHz: Geophysics, 52, 644–654, doi: 10.1190/1.1442332.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Kozeny, J., 1927, Ueber kapillare leitung des Wassers im Boden: Stizungsber Akad Wiss Wien, 136, 271–306.Google Scholar
  • Lesmes, D. P., and S. P. Friedman, 2005, Relationships between the electrical and hydrogeological properties of rocks and soils: Hydrogeophysics: Water Science and Technology, 50, 87–128.WSTED40273-1223CrossrefGoogle Scholar
  • Lorensen, W. E., and H. E. Cline, 1987, Marching cubes: A high resolution 3D surface construction algorithm: ACM Transactions on Graphics, 21, no. 4, 163–169.ATGRDF0730-0301Google Scholar
  • Matyka, M., A. Khalili, and Z. Koza, 2008, Tortuosity-porosity relation in porous media flow: Physical Review E, 78, no. 2, 1–8, doi: 10.1103/PhysRevE.78.026306.PLEEE81539-3755CrossrefWeb of ScienceGoogle Scholar
  • Mendelson, K. S., and M. H. Cohen, 1982, The effect of grain anisotropy on the electrical properties of sedimentary rocks: Geophysics, 47, 257–263, doi: 10.1190/1.1441332.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Nenna, V., A. Pidlisecky, and R. Knight, 2011, Application of an extended Kalman filter approach to inversion of time-lapse electrical resistivity imaging data for monitoring recharge: Water Resources Research, 47, W10525, doi: 10.1029/2010WR010120.WRERAQ0043-1397CrossrefWeb of ScienceGoogle Scholar
  • Perez-Rosales, C., 1982, On the relationship between formation resistivity factor and porosity: Society of Petroleum Engineers Journal, 22, no. 4, 531–536, doi: 10.2118/10546-PA.SPTJAJ0037-9999CrossrefGoogle Scholar
  • Pidlisecky, A., A. R. Cockett, and R. Knight, 2013, Electrical conductivity probes for studying vadose zone processes: Advances in data acquisition and analysis: Vadose Zone Journal, 12, 1–12.VZJAABCrossrefWeb of ScienceGoogle Scholar
  • Pidlisecky, A., E. Haber, and R. Knight, 2007, RESINVM3D : A 3D resistivity inversion package: Geophysics, 72, no. 2, H1–H10, doi: 10.1190/1.2402499.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Pollock, D. W., 1988, Semianalytical computation of path lines for finite-difference models: Ground Water, 26, 743–750, doi: 10.1111/j.1745-6584.1988.tb00425.x.GRWAAP0017-467XCrossrefWeb of ScienceGoogle Scholar
  • Racz, A. J., A. T. Fisher, C. M. Schmidt, B. S. Lockwood, and M. L. Huertos, 2011, Spatial and temporal infiltration dynamics during managed aquifer recharge: Ground Water, 1–9.GRWAAP0017-467XWeb of ScienceGoogle Scholar
  • Regberg, A., K. Singha, M. Tien, F. Picardal, Q. Zheng, J. Schieber, E. Roden, and S. L. Brantley, 2011, Electrical conductivity as an indicator of iron reduction rates in abiotic and biotic systems: Water Resources Research, 47, W04509, doi: 10.1029/2010WR009551.WRERAQ0043-1397CrossrefWeb of ScienceGoogle Scholar
  • Regnery, J., J. Lee, P. Kitanidis, T. Illangasekare, J. O. Sharp, and J. E. Drewes, 2013, Integration of artificial recharge and recovery systems for impaired water sources in urban settings: Overcoming current limitations and engineering challenges: Environmental Engineering Science, 30, no. 8, 409–420, doi: 10.1089/ees.2012.0186.EESCF51092-8758CrossrefWeb of ScienceGoogle Scholar
  • Revil, A., E. Atekwana, C. Zhang, A. Jardani, and S. Smith, 2012, A new model for the spectral induced polarization signature of bacterial growth in porous media: Water Resources Research, 48, W09545WRERAQ0043-1397.CrossrefWeb of ScienceGoogle Scholar
  • Revil, A., L. M. Cathles, S. Losh, and J. A. Nunn, 1998, Electrical conductivity in shaly sands with geophysical applications: Journal of Geophysical Research, 103, 23925, doi: 10.1029/98JB02125.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Revil, A., and P. W. J. Glover, 1997, Theory of ionic-surface electrical conduction in porous media: Physical Review B, 55, no. 3, 1757–1773, doi: 10.1103/PhysRevB.55.1757.PRBMDO1098-0121CrossrefWeb of ScienceGoogle Scholar
  • Revil, A., and M. Skold, 2011, Salinity dependence of spectral induced polarization in sands and sandstones: Geophysical Journal International, 187, 813–824, doi: 10.1111/j.1365-246X.2011.05181.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Rink, M., and J. R. Schopper, 1974, Interface conductivity and its implications to electric logging: 15th Annual Logging Symposium Transactions, SPWLA, 1–15.Google Scholar
  • Roberts, J. N., and L. M. Schwartz, 1985, Grain consolidation and electrical conductivity in porous media:Physical Review B, 31, no. 9, 5990–5997.CrossrefWeb of ScienceGoogle Scholar
  • Saenger, E. H., F. Enzmann, Y. Keehm, and H. Steeb, 2011, Digital rock physics: Effect of fluid viscosity on effective elastic properties: Journal of Applied Geophysics, 74, no. 4, 236–241, doi: 10.1016/j.jappgeo.2011.06.001.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Schwartz, L., P. Sen, and D. Johnson, 1989, Influence of rough surfaces on electrolytic conduction in porous media: Physical Review B, 40, no. 4, 2450–2458, doi: 10.1103/PhysRevB.40.2450.PRBMDO1098-0121CrossrefWeb of ScienceGoogle Scholar
  • Sen, P. N., and P. A. Goode, 1992, Influence of temperature on electrical conductivity on shaly sands: Geophysics, 57, 89–96, doi: 10.1190/1.1443191.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Sen, P. N., C. Scala, and M. H. Cohen, 1981, A self‐similar model for sedimentary rocks with application to the dielectric constant of fused glass beads: Geophysics, 46 781–795, doi: 10.1190/1.1441215.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Skopec, R. A., 1994, Proper coring and wellsite core handling procedures: The first step toward reliable core analysis: Journal of Petroleum Technology, 46, 2815, doi: 10.2118/28153-PA.JPTCAZ0022-3522CrossrefGoogle Scholar
  • Spearing, M., and G. P. Matthews, 1991, Modelling characteristic properties of sandstones: Transport in Porous Media, 6, 71–90, doi: 10.1007/BF00136822.TPMEEI0169-3913CrossrefWeb of ScienceGoogle Scholar
  • Spitzer, K., 1995, A 3D finite-difference algorithm for DC resistivity modelling using conjugate gradient methods: Geophysical Journal International, 123, 903–914, doi: 10.1111/j.1365-246X.1995.tb06897.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Suman, R., and D. Ruth, 1993, Formation factor and tortuosity of homogeneous porous media: Transport in Porous Media, 12, 185–206, doi: 10.1007/BF00616979.TPMEEI0169-3913CrossrefWeb of ScienceGoogle Scholar
  • Taylor, S., and R. Barker, 2002, Resistivity of partially saturated Triassic sandstone: Geophysical Prospecting, 50, 603–613, doi: 10.1046/j.1365-2478.2002.00339.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Tøndel, R., J. Ingham, D. LaBrecque, H. Schütt, D. McCormick, R. Godfrey, J. A. Rivero, S. Dingwall, and A. Williams, 2011, Reservoir monitoring in oil sands: Developing a permanent cross‐well system: 81st Annual International Meeting, SEG, Expanded Abstracts, 4077–4081.Google Scholar
  • Waxman, M. H., and L. J. M. Smits, 1968, Electrical conductivities in oil-bearing shaly sands: Society of Petroleum Engineers Journal, 8, no. 2, 107–122, doi: 10.2118/1863-A.SPTJAJ0037-9999CrossrefGoogle Scholar
  • Worthington, P. F., 1993, The uses and abuses of the Archie equations, 1: The formation factor-porosity relationship: Journal of Applied Geophysics, 30, no. 3, 215–228, doi: 10.1016/0926-9851(93)90028-W.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Worthington, P. F., R. J. Evans, J. D. Klein, J. D. Walls, and G. White, 1990, SCA guidelines for sample preparation and porosity measurement of electrical resistivity samples Part III — The mechanics of electrical resistivity measurement on rock samples: The Log Analyst, 31, no. 2, 64–67.LGALAS0024-581XGoogle Scholar
  • Zhang, Y., M. J. King, and A. Datta-Gupta, 2012, Robust streamline tracing using inter-cell fluxes in locally refined and unstructured grids: Water Resources Research, 48, W06521, doi: 10.1029/2012WR011971.WRERAQ0043-1397CrossrefWeb of ScienceGoogle Scholar
  • Wyllie, M. R. J., and M. B. Spangler, 1952, Application of electrical resistivity measurements to problem of fluid flow in porous media: Bulletin of the American Association of Petroleum Geologists, 36, no. 2, 359–403.AAPGBS0002-7464Web of ScienceGoogle Scholar