This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Convolutional neural networks as aid in core lithofacies classification

Authors:

Artificial intelligence methods have a very wide range of applications. From speech recognition to self-driving cars, the development of modern deep-learning architectures is helping researchers to achieve new levels of accuracy in different fields. Although deep convolutional neural networks (CNNs) (a kind of deep-learning technique) have reached or surpassed human-level performance in image recognition tasks, little has been done to transport this new image classification technology to geoscientific problems. We have developed what we believe to be the first use of CNNs to identify lithofacies in cores. We use highly accurate models (trained with millions of images) and transfer learning to classify images of cored carbonate rocks. We found that different modern CNN architectures can achieve high levels of lithologic image classification accuracy (approximately 90%) and can aid in the core description task. This core image classification technique has the potential to greatly standardize and accelerate the description process. We also provide the community with a new set of labeled data that can be used for further geologic/data science studies.

References

  • Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, 2016, TensorFlow: A system for large-scale machine learning: 12th USENIX Symposium on Operating Systems Design and Implementation, 265–283.Google Scholar
  • Allen, D. B., and M. J. Pranter, 2016, Geologically constrained electrofacies classification of fluvial deposits: An example from the cretaceous Mesaverde Group, Uinta and Piceance Basins: AAPG Bulletin, 100, 1775–1801, doi: 10.1306/05131614229.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Baldwin, J. L., R. M. Bateman, and C. L. Wheatley, 1990, Application of a neural network to the problem of mineral identification from well logs: Presented at the SPWLA 31.Google Scholar
  • Bestagini, P., V. Lipari, and S. Tubaro, 2017, A machine learning approach to facies classification using well logs: 87th Annual International Meeting, SEG, Expanded Abstracts, 2137–2142, doi: 10.1190/segam2017-17729805.1.AbstractGoogle Scholar
  • Blagoderov, V., I. J. Kitching, L. Livermore, T. J. Simonsen, and V. S. Smith, 2012, No specimen left behind: Industrial scale digitization of natural history collections: ZooKeys, 209, 133–146, doi: 10.3897/zookeys.209.3178.CrossrefWeb of ScienceGoogle Scholar
  • Buda, M., A. Maki, and M. A. Mazurowski, 2018, A systematic study of the class imbalance problem in convolutional neural networks: Neural Networks, 106, 249–259, doi: 10.1016/J.NEUNET.2018.07.011.NNETEB0893-6080CrossrefWeb of ScienceGoogle Scholar
  • Carranza-Rojas, J., H. Goeau, P. Bonnet, E. Mata-Montero, and A. Joly, 2017, Going deeper in the automated identification of Herbarium specimens: BMC Evolutionary Biology, 17, 181, doi: 10.1186/s12862-017-1014-z.BEBMCG1471-2148CrossrefWeb of ScienceGoogle Scholar
  • Chollet, F., 2015, Keras, https://keras.io, accessed 15 May 2019.Google Scholar
  • Daily, M., S. Medasani, R. Behringer, and M. Trivedi, 2017, Self-driving cars: Computer, 50, 18–23, doi: 10.1109/MC.2017.4451204.CPTRB40018-9162CrossrefWeb of ScienceGoogle Scholar
  • de Matos, M. C., P. L. Osorio, and P. R. Johann, 2007, Unsupervised seismic facies analysis using wavelet transform and self-organizing maps: Geophysics, 72, no. 1, P9–P21, doi: 10.1190/1.2392789.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • de Matos, M. C.YenuguM. (Moe), S. M. Angelo, and K. J. Marfurt, 2011, Integrated seismic texture segmentation and cluster analysis applied to channel delineation and chert reservoir characterization: Geophysics, 76, no. 5, P11–P21, doi: 10.1190/geo2010-0150.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Deng, J., W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, 2009, ImageNet: A large-scale hierarchical image database: IEEE Conference on Computer Vision and Pattern Recognition, 248–255, doi: 10.1109/CVPR.2009.5206848.CrossrefGoogle Scholar
  • Dumoulin, V., and F. Visin, 2016, A guide to convolution arithmetic for deep learning: ArXiv e–prints.Google Scholar
  • Ellwood, E. R., B. A. Dunckel, P. Flemons, R. Guralnick, G. Nelson, G. Newman, S. Newman, D. Paul, G. Riccardi, N. Rios, K. C. Seltmann, and A. R. Mast, 2015, Accelerating the digitization of biodiversity research specimens through online public participation: BioScience, 65, 383–396, doi: 10.1093/biosci/biv005.BISNAS0006-3568CrossrefWeb of ScienceGoogle Scholar
  • Esteva, A., B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun, 2017, Dermatologist-level classification of skin cancer with deep neural networks: Nature, 542, 115–118, doi: 10.1038/nature21056.CrossrefWeb of ScienceGoogle Scholar
  • Everson, R. M., and J. E. Fieldsend, 2006, Multi-class ROC analysis from a multi-objective optimisation perspective: Pattern Recognition Letters, 27, 918–927, doi: 10.1016/J.PATREC.2005.10.016.PRLEDG0167-8655CrossrefWeb of ScienceGoogle Scholar
  • Fawcett, T., 2006, An introduction to ROC analysis: Pattern Recognition Letters, 27, 861–874, doi: 10.1016/J.PATREC.2005.10.010.PRLEDG0167-8655CrossrefWeb of ScienceGoogle Scholar
  • Ferri, C., J. Hernández-Orallo, and M. A. Salido, 2003, Volume under the ROC surface for multi-class problems BT, in N. LavračD. GambergerH. BlockeelL. Todorovski, eds., Machine learning: ECML 2003: Springer, 108–120.CrossrefGoogle Scholar
  • Gardner, J. W., T. C. Pearce, S. Friel, P. N. Bartlett, and N. Blair, 1994, A multisensor system for beer flavour monitoring using an array of conducting polymers and predictive classifiers: Sensors and Actuators B: Chemical, 18, 240–243, doi: 10.1016/0925-4005(94)87089-6.CrossrefWeb of ScienceGoogle Scholar
  • Gomez Villa, A., A. Salazar, and F. Vargas, 2017, Towards automatic wild animal monitoring: Identification of animal species in camera-trap images using very deep convolutional neural networks: Ecological Informatics, 41, 24–32, doi: 10.1016/J.ECOINF.2017.07.004.CrossrefWeb of ScienceGoogle Scholar
  • He, K., X. Zhang, S. Ren, and J. Sun, 2016, Identity mappings in deep residual networks, in B. LeibeJ. MatasN. SebeM. Welling, eds., Computer vision — ECCV 2016: Springer International Publishing, 630–645.CrossrefGoogle Scholar
  • Hunter, J. D., 2007, Matplotlib: A 2D graphics environment: Computing in Science and Engineering, 9, 90–95, doi: 10.1109/MCSE.2007.55.CrossrefWeb of ScienceGoogle Scholar
  • Japkowicz, N., and S. Stephen, 2002, The class imbalance problem: A systematic study: Intelligent Data Analysis, 6, 429–449.CrossrefGoogle Scholar
  • Kortström, J., M. Uski, and T. Tiira, 2016, Automatic classification of seismic events within a regional seismograph network: Computers and Geosciences, 87, 22–30, doi: 10.1016/J.CAGEO.2015.11.006.CrossrefWeb of ScienceGoogle Scholar
  • Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2012, ImageNet classification with deep convolutional neural networks: Proceedings of the 25th International Conference on Neural Information Processing Systems, 1097–1105.Google Scholar
  • LeCun, Y., Y. Bengio, and G. Hinton, 2015, Deep learning: Nature, 521, 436–444, doi: 10.1038/nature14539.CrossrefWeb of ScienceGoogle Scholar
  • NOAA, 2016, Archive of core and site/hole data and photographs from the Deep Sea Drilling Project (DSDP), https://catalog.data.gov/dataset/archive-of-core-and-site-hole-data-and-photographs-from-the-deep-sea-drilling-project-dsdp, accessed 6 December 2018.Google Scholar
  • Norouzzadeh, M. S., A. Nguyen, M. Kosmala, A. Swanson, M. S. Palmer, C. Packer, and J. Clune, 2018, Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning: Proceedings of the National Academy of Sciences of the United States of America, 115, E5716–E5725, doi: 10.1073/pnas.1719367115.CrossrefWeb of ScienceGoogle Scholar
  • Olah, C., A. Mordvintsev, and L. Schubert, 2017, Feature visualization: Distill, doi: 10.23915/distill.00007.CrossrefGoogle Scholar
  • Olah, C., A. Satyanarayan, I. Johnson, S. Carter, L. Schubert, K. Ye, and A. Mordvintsev, 2018, The building blocks of interpretability: Distill, doi: 10.23915/distill.00010.CrossrefGoogle Scholar
  • Oquab, M., L. Bottou, I. Laptev, and J. Sivic, 2014, Learning and transferring mid-level image representations using convolutional neural networks: IEEE Conference on Computer Vision and Pattern Recognition, 1717–1724, doi: 10.1109/CVPR.2014.222.CrossrefGoogle Scholar
  • Pan, S. J., and Q. Yang, 2010, A survey on transfer learning: IEEE Transactions on Knowledge and Data Engineering, 22, 1345–1359, doi: 10.1109/TKDE.2009.191.ITKEEH1041-4347CrossrefWeb of ScienceGoogle Scholar
  • Perol, T., M. Gharbi, and M. Denolle, 2018, Convolutional neural network for earthquake detection and location: Science Advances, 4, e1700578, doi: 10.1126/sciadv.1700578.CrossrefWeb of ScienceGoogle Scholar
  • Qi, J., T. Lin, T. Zhao, F. Li, and K. Marfurt, 2016, Semisupervised multiattribute seismic facies analysis: Interpretation, 4, no. 1, SB91–SB106, doi: 10.1190/INT-2015-0098.1.AbstractGoogle Scholar
  • Qian, F., M. Yin, X.-Y. Liu, Y.-J. Wang, C. Lu, and G.-M. Hu, 2018, Unsupervised seismic facies analysis via deep convolutional autoencoders: Geophysics, 83, no. 3, A39–A43, doi: 10.1190/geo2017-0524.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Roy, A., A. S. Romero-Peláez, T. J. Kwiatkowski, and K. J. Marfurt, 2014, Generative topographic mapping for seismic facies estimation of a carbonate wash, Veracruz Basin, southern Mexico: Interpretation, 2, no. 1, SA31–SA47, doi: 10.1190/INT-2013-0077.1.AbstractGoogle Scholar
  • Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, 2015, ImageNet large scale visual recognition challenge: International Journal of Computer Vision, 115, 211–252, doi: 10.1007/s11263-015-0816-y.IJCVEQ0920-5691CrossrefWeb of ScienceGoogle Scholar
  • Sandler, M., A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, 2018, MobileNetV2: Inverted residuals and linear bottlenecks: ArXiv e–prints.CrossrefGoogle Scholar
  • Sener, O., and S. Savarese, 2018, Active learning for convolutional neural networks: A core-set approach: International Conference on Learning Representations.Google Scholar
  • Settles, B., 2012, Active learning: Synthesis Lectures on Artificial Intelligence and Machine Learning, 6, 1–114, doi: 10.2200/S00429ED1V01Y201207AIM018.CrossrefGoogle Scholar
  • Simonyan, K., and A. Zisserman, 2014, Very deep convolutional networks for large-scale image recognition, https://arxiv.org/abs/1409.1556, accessed 15 May 2019.Google Scholar
  • Sinha, S., Y. Wen, R. A. Pires de Lima, and K. Marfurt, 2018, Statistical controls on induced seismicity: Unconventional Resources Technology Conference, doi: 10.15530/urtec-2018-2897507-MS.CrossrefGoogle Scholar
  • Suriamin, F., and M. J. Pranter, 2018, Stratigraphic and lithofacies control on pore characteristics of Mississippian limestone and chert reservoirs of north-central Oklahoma: Interpretation, 6, no. 4, T1001–T1022, doi: 10.1190/int-2017-0204.1.AbstractGoogle Scholar
  • Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, 2014, Going deeper with convolutions: CoRR, abs/1409.4.CrossrefGoogle Scholar
  • Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, 2015, Rethinking the inception architecture for computer vision: CoRR, abs/1512.0.CrossrefGoogle Scholar
  • Tajbakhsh, N., J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Gotway, and J. Liang, 2016, Convolutional neural networks for medical image analysis: Full training or fine tuning?: IEEE Transactions on Medical Imaging, 35, 1299–1312, doi: 10.1109/TMI.2016.2535302.ITMID40278-0062CrossrefWeb of ScienceGoogle Scholar
  • TensorFlow Hub, 2018, https://tfhub.dev/, accessed 26 November 2018.Google Scholar
  • USGS Core Research Center, 2018, Links to core repositories, https://www.usgs.gov/core-science-systems/nggdp/core-research-center/links-core-repositories, accessed 6 December 2018.Google Scholar
  • Wu, Y., Y. Lin, Z. Zhou, D. C. Bolton, J. Liu, and P. Johnson, 2018, Deepdetect: A cascaded region-based densely connected network for seismic event detection: IEEE Transactions on Geoscience and Remote Sensing, 57, 1–14, doi: 10.1109/TGRS.2018.2852302.IGRSD20196-2892CrossrefWeb of ScienceGoogle Scholar
  • Yosinski, J., J. Clune, Y. Bengio, and H. Lipson, 2014, How transferable are features in deep neural networks?: Advances in Neural Information Processing Systems, 27, 3320–3328.1049-5258Google Scholar
  • Zhang, G., Z. Wang, H. Li, Y. Sun, Q. Zhang, and W. Chen, 2018, Permeability prediction of isolated channel sands using machine learning: Journal of Applied Geophysics, 159, 605–615, doi: 10.1016/J.JAPPGEO.2018.09.011.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Zhang, Y., H. A. Salisch, and J. G. McPherson, 1999, Application of neural networks to identify lithofacies from well logs: Exploration Geophysics, 30, 45, doi: 10.1071/EG999045.CrossrefGoogle Scholar
  • Zhao, T., F. Li, and K. J. Marfurt, 2017, Constraining self-organizing map facies analysis with stratigraphy: An approach to increase the credibility in automatic seismic facies classification: Interpretation, 5, no. 2, T163–T171, doi: 10.1190/INT-2016-0132.1.AbstractGoogle Scholar
  • Zhao, T., J. Zhang, F. Li, and K. J. Marfurt, 2016, Characterizing a turbidite system in Canterbury Basin, New Zealand, using seismic attributes and distance-preserving self-organizing maps: Interpretation, 4, no. 1, SB79–SB89, doi: 10.1190/INT-2015-0094.1.AbstractGoogle Scholar
  • Zoph, B., and Q. V. Le, 2016, Neural architecture search with reinforcement learning: CoRR, abs/1611.0.Google Scholar
  • Zoph, B., V. Vasudevan, J. Shlens, and Q. V. Le, 2017, Learning transferable architectures for scalable image recognition: CoRR, abs/1707.0.CrossrefGoogle Scholar