This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

We have investigated the effects of organic content and maturation on the elastic properties of source rock shales, mainly through integration of a well-log database from the Central North Sea and associated geochemical data. Our aim is to improve the understanding of how seismic properties change in source rock shales due to geologic variations and how these might manifest on seismic data in deeper, undrilled parts of basins in the area. The Tau and Draupne Formations (Kimmeridge shale equivalents) in immature to early mature stages exhibit variation mainly related to compaction and total organic carbon (TOC) content. We assess the link between depth, acoustic impedance (AI), and TOC in this setting, and we express it as an empirical relation for TOC prediction. In addition, where S-wave information is available, we combine two seismic properties and infer rock-physics trends for semiquantitative prediction of TOC from VP/VS and AI. Furthermore, data from one reference well penetrating mature source rock in the southern Viking Graben indicate that a notable hydrocarbon effect can be observed as an addition to the inherently low kerogen-related velocity and density. Published Kimmeridge shale ultrasonic measurements from 3.85 to 4.02 km depth closely coincide with well-log measurements in the mature shale, indicating that upscaled log data are reasonably capturing variations in the actual rock properties. Amplitude variation with offset inversion attributes should in theory be interpreted successively in terms of compaction, TOC, and maturation with associated generation of hydrocarbons. Our compaction-consistent decomposition of these effects can be of aid in such interpretations.

References

  • Aki, K., and P. G. Richards, 1980, Quantitative seismology: Freeman.Google Scholar
  • Alfred, D., and L. Vernik, 2012, A new petrophysical model for organic shales: Presented at the SPWLA 53rd Annual Logging Symposium.Google Scholar
  • Avseth, P., and J. M. Carcione, 2015, Rock-physics analysis of clay-rich source rocks on the Norwegian Shelf: The Leading Edge, 34, 1340–1348, doi: 10.1190/tle34111340.1.AbstractGoogle Scholar
  • Badics, B., A. Avu, and S. Mackie, 2015, Assessing source rock distribution in Heather and Draupne Formations of the Norwegian North Sea: A workflow using organic geochemical, petrophysical, and seismic character: Interpretation, 3, no. 3, SV45–SV68, doi: 10.1190/INT-2014-0242.1.AbstractGoogle Scholar
  • Bandyopadhyay, K., R. Sain, E. Liu, C. Harris, A. Martinez, and M. Payne, 2012, Rock property inversion in organic-rich shale: Uncertainties, ambiguities, and pitfalls: 82nd Annual International Meeting, SEG, Expanded Abstracts, doi: 10.1190/segam2012-0932.1.AbstractGoogle Scholar
  • Bjørlykke, K., 1998, Clay mineral diagenesis in sedimentary basins — A key to the prediction of rock properties. Examples from the North Sea Basin: Clay Minerals, 33, 15–34, doi: 10.1180/000985598545390.CLMIAFCrossrefGoogle Scholar
  • Bjørlykke, K., 2015, Introduction to petroleum geoscience, in K. Bjørlykke, ed., Petroleum geoscience: From sedimentary environments to rock physics, 2nd ed.: Springer-Verlag, 1–29.CrossrefGoogle Scholar
  • Carcione, J. M., 2000, A model for seismic velocity and attenuation in petroleum source rocks: Geophysics, 65, 1080–1092, doi: 10.1190/1.1444801.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Carcione, J. M., and P. Avseth, 2015, Rock-physics templates for clay-rich source rocks: Geophysics, 80, no. 5, D481–D500, doi: 10.1190/geo2014-0510.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Castagna, J. P., and H. W. Swan, 1997, Principles of AVO crossplotting: The Leading Edge, 16, 337–344, doi: 10.1190/1.1437626.AbstractGoogle Scholar
  • Castagna, J. P., H. W. Swan, and D. J. Foster, 1998, Framework for AVO gradient and intercept interpretation: Geophysics, 63, 948–956, doi: 10.1190/1.1444406.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Connan, J., 1974, Time-temperature relation in oil genesis: AAPG Bulletin, 58, 2516–2521.AABUD20149-1423Google Scholar
  • Dang, S. T., C. H. Sondergeld, and C. S. Rai, 2016, A new approach to measuring organic density: Petrophysics, 57, 112–120.Google Scholar
  • Dembicki, H., 2009, Three common source rock evaluation errors made by geologists during prospect or play appraisals: AAPG Bulletin, 93, 341–356, doi: 10.1306/10230808076.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Dræge, A., M. Jakobsen, and T. A. Johansen, 2006, Rock physics modelling of shale diagenesis: Petroleum Geoscience, 12, 49–57, doi: 10.1144/1354-079305-665.CrossrefWeb of ScienceGoogle Scholar
  • Faleide, J. I., F. Tsikalas, A. J. Breivik, R. Mjelde, O. Ritzmann, Ø. Engen, J. Wilson, and O. Eldholm, 2008, Structure and evolution of the continental margin off Norway and the Barents Sea: Episodes, 31, 82–91.EPSDDF0705-3797CrossrefWeb of ScienceGoogle Scholar
  • Gautier, D. L., 2005, Kimmeridgian shales total petroleum system of the North Sea Graben province: U.S. Geological Survey Bulletin, 2204-C, 1–24.Google Scholar
  • Goodway, B., T. Chen, and J. Downton, 1997, Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters; “λρ”, “μρ”, & “λ/μ fluid stack”, from P and S inversions: 67th Annual International Meeting, SEG, Expanded Abstracts, 183–186, doi: 10.1190/1.1885795.AbstractGoogle Scholar
  • Guo, Z., X.-Y. Li, C. Liu, X. Feng, and Y. Shen, 2013, A shale rock physics model for analysis of brittleness index, mineralogy and porosity in the Barnett shale: Journal of Geophysics and Engineering, 10, 1–10, doi: 10.1088/1742-2132/10/2/025006.CrossrefWeb of ScienceGoogle Scholar
  • Hansen, J. A., H. D. Yenwongfai, M. Fawad, and N. H. Mondol, 2017, Estimating exhumation using experimental compaction trends and rock physics relations, with continuation into analysis of source and reservoir rocks: Central North Sea, offshore Norway: 87th Annual International Meeting, SEG, Expanded Abstracts, 3971–3975, doi: 10.1190/segam2017-17783053.1.AbstractGoogle Scholar
  • Ibrahim, M. A., and T. Mukerji, 2017, Thermal maturation effects on the elastic properties of organic rich mudrocks: 87th Annual International Meeting, SEG, Expanded Abstracts, 3955–3960, doi: 10.1190/segam2017-17790635.1.AbstractGoogle Scholar
  • Isaksen, G. H., and K. H. I. Ledje, 2001, Source rock quality and hydrocarbon migration pathways within the greater Utsira high area, Viking Graben, Norwegian North Sea: AAPG Bulletin, 85, 861–883.AABUD20149-1423Web of ScienceGoogle Scholar
  • Japsen, P., 1998, Regional velocity-depth anomalies, North Sea chalk: A record of overpressure and neogene uplift and erosion: AAPG Bulletin, 82, 2031–2074.AABUD20149-1423Web of ScienceGoogle Scholar
  • Jordt, H., J. I. Faleide, K. Bjørlykke, and M. T. Ibrahim, 1995, Cenozoic sequence stratigraphy of the central and northern North Sea basin: Tectonic development, sediment distribution and provenance areas: Marine and Petroleum Geology, 12, 845–879, doi: 10.1016/0264-8172(95)98852-V.MPEGD80264-8172CrossrefGoogle Scholar
  • Kalani, M., J. Jahren, N. H. Mondol, and J. I. Faleide, 2015a, Compaction processes and rock properties in uplifted clay dominated units — The Egersund basin, Norwegian North Sea: Marine and Petroleum Geology, 68, 596–613, doi: 10.1016/j.marpetgeo.2014.08.015.MPEGD80264-8172CrossrefGoogle Scholar
  • Kalani, M., J. Jahren, N. H. Mondol, and J. I. Faleide, 2015b, Petrophysical implications of source rock microfracturing: International Journal of Coal Geology, 143, 43–67, doi: 10.1016/j.coal.2015.03.009.CrossrefWeb of ScienceGoogle Scholar
  • Khadeeva, Y., and L. Vernik, 2014, Rock-physics model for unconventional shales: The Leading Edge, 33, 318–322, doi: 10.1190/tle33030318.1.AbstractGoogle Scholar
  • Lash, G., and T. Engelder, 2005, An analysis of horizontal microcracking during catagenesis: Example from the Catskill delta complex: AAPG Bulletin, 89, 1433–1449, doi: 10.1306/05250504141.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Løseth, H., L. Wensaas, M. Gading, K. Duffaut, and M. Springer, 2011, Can hydrocarbon source rocks be identified on seismic data?: Geology, 39, 1167–1170, doi: 10.1130/G32328.1.GLGYBA0091-7613CrossrefWeb of ScienceGoogle Scholar
  • Lucier, A. M., R. Hofmann, and L. T. Bryndzia, 2011, Evaluation of variable gas saturation on acoustic log data from the Haynesville Shale gas play, NW Louisiana, USA: The Leading Edge, 30, 300–311, doi: 10.1190/1.3567261.AbstractGoogle Scholar
  • Mannie, A. S., C. A.-L. Jackson, and G. J. Hampson, 2014, Structural controls on the stratigraphic architecture of net-transgressive shallow-marine strata in a salt-influenced rift basin: Middle-to-upper Jurassic Egersund basin, Norwegian North Sea: Basin Research, 26, 675–700, doi: 10.1111/bre.12058.CrossrefGoogle Scholar
  • Mathur, A., C. H. Sondergeld, and C. S. Rai, 2016, Comparison of steady-state and transient methods for measuring shale permeability: Presented at the SPE Low Perm Symposium, SPE-180259-MS, 1–15.CrossrefGoogle Scholar
  • Meyer, B. L., and M. H. Nederlof, 1984, Identification of source rocks on wireline logs by density/resistivity and sonic transit time/resistivity crossplots: AAPG Bulletin, 68, 121–129.AABUD20149-1423Web of ScienceGoogle Scholar
  • Mondol, N. H., 2009, Porosity and permeability development in mechanically compacted silt-kaolinite mixtures: 79th Annual International Meeting, SEG, Expanded Abstracts, 2139–2143, doi: 10.1190/1.3255280.AbstractGoogle Scholar
  • Mondol, N. H., K. Bjørlykke, and J. Jahren, 2008, Experimental compaction of clays: Relationship between permeability and petrophysical properties in mudstones: Petroleum Geoscience, 14, 319–337, doi: 10.1144/1354-079308-773.CrossrefWeb of ScienceGoogle Scholar
  • NPD, 2014, The 2014 Norwegian Petroleum Directorate lithostratigraphic charts, http://www.npd.no/en/Topics/Geology/Lithostratigraphy/, accessed 5 November 2014.Google Scholar
  • NPD, 2017, Norwegian Petroleum Directorate FactPages, http://factpages.npd.no/, accessed 15 September 2017.Google Scholar
  • Ødegaard, E., and P. Avseth, 2004, Well log and seismic data analysis using rock physics templates: First Break, 23, 37–43.Google Scholar
  • Passey, Q. R., K. M. Bohacs, W. L. Esch, R. Klimentidis, and S. Sinha, 2010, From oil-prone source rock to gas-producing shale reservoir-geologic and petrophysical characterization of unconventional shale-gas reservoirs: Presented at the CPS/SPE International Oil and Gas Conference and Exhibition.CrossrefGoogle Scholar
  • Passey, Q. R., S. Creaney, J. B. Kulla, F. J. Moretti, and J. D. Stroud, 1990, A practical model for organic richness from porosity and resistivity logs: AAPG Bulletin, 74, 1777–1794.AABUD20149-1423Web of ScienceGoogle Scholar
  • Pedersen, J. H., D. A. Karlsen, K. Backer-Owe, J. E. Lie, and H. Brunstad, 2006, The geochemistry of two unusual oils from the Norwegian North Sea: Implications for new source rock and play scenario: Petroleum Geoscience, 12, 85–96, doi: 10.1144/1354-079305-658.CrossrefWeb of ScienceGoogle Scholar
  • Peltonen, C., Ø. Marcussen, K. Bjørlykke, and J. Jahren, 2009, Clay mineral diagenesis and Quartz cementation in mudstones: The effects of smectite to illite reaction on rock properties: Marine and Petroleum Geology, 26, 887–898, doi: 10.1016/j.marpetgeo.2008.01.021.MPEGD80264-8172CrossrefWeb of ScienceGoogle Scholar
  • Ritter, U., 1988, Modelling of hydrocarbon generation patterns in the Egersund sub-basin, North Sea: Advances in Organic Geochemistry, 13, 165–174, doi: 10.1016/0146-6380(88)90036-8.CrossrefGoogle Scholar
  • Sayers, C., 2013a, The effect of kerogen on the AVO response of organic-rich shales: The Leading Edge, 32, 1514–1519, doi: 10.1190/tle32121514.1.AbstractGoogle Scholar
  • Sayers, C., 2013b, The effect of kerogen on the elastic anisotropy of organic-rich shales: Geophysics, 78, no. 2, D65–D74, doi: 10.1190/geo2012-0309.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Smith, G. C., and P. M. Gidlow, 1987, Weighted stacking for rock property estimation and detection of gas: Geophysical Prospecting, 35, 993–1014, doi: 10.1111/j.1365-2478.1987.tb00856.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Sondergeld, C. H., and C. S. Rai, 2011, Elastic anisotropy of shales: The Leading Edge, 30, 324–331, doi: 10.1190/1.3567264.AbstractGoogle Scholar
  • Sondergeld, C. H., C. S. Rai, R. W. Margesson, and K. J. Whidden, 2000, Ultrasonic measurement of anisotropy on the Kimmeridge shale: 70th Annual International Meeting, SEG, Expanded Abstracts, 1858–1861, doi: 10.1190/1.1815791.AbstractGoogle Scholar
  • Sun, S. Z., Y. Sun, C. Sun, Z. Liu, and N. Dong, 2013, Methods of calculating total organic carbon from well logs and its application on rock’s properties analysis: GeoConvention: Integration, AAPG/CSPG.Google Scholar
  • Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954–1966, doi: 10.1190/1.1442051.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Thyberg, B., and J. Jahren, 2011, Quartz cementation in mudstones: Sheet-like Quartz cement from clay mineral reactions during burial: Petroleum Geoscience, 17, 53–63, doi: 10.1144/1354-079310-028.CrossrefGoogle Scholar
  • Vernik, L., 1994, Hydrocarbon-generation-induced microcracking of source rocks: Geophysics, 59, 555–563, doi: 10.1190/1.1443616.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Vernik, L., 2016, Seismic petrophysics in quantitative interpretation: SEG.AbstractGoogle Scholar
  • Vernik, L., J. P. Castagna, and S. J. Omovie, 2018, S-wave velocity prediction in unconventional shale reservoirs: Geophysics, 83, no. 1, MR35–MR45, doi: 10.1190/geo2017-0349.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Vernik, L., and C. Landis, 1996, Elastic anisotropy of source rocks — Implications for hydrocarbon generation and primary migration: AAPG Bulletin, 80, 531–544.AABUD20149-1423Google Scholar
  • Vernik, L., and J. Milovac, 2011, Rock physics of organic shales: The Leading Edge, 30, 318–323, doi: 10.1190/1.3567263.AbstractGoogle Scholar
  • Yenugu, M., and D.-H. Han, 2013, Seismic characterization of kerogen maturity: An example from Bakken shale: 83rd Annual International Meeting, SEG, Expanded Abstracts, 2773–2777, doi: 10.1190/segam2013-0629.1.AbstractGoogle Scholar
  • Yenugu, M., and L. Vernik, 2015, Constraining seismic rock-property logs in organic shale reservoirs: The Leading Edge, 34, 1326–1331, doi: 10.1190/tle34111326.1.AbstractGoogle Scholar
  • Zadeh, M. K., N. H. Mondol, and J. Jahren, 2016, Compaction and rock properties of Mesozoic and Cenozoic mudstones and shales, northern North Sea: Marine and Petroleum Geology, 76, 344–361, doi: 10.1016/j.marpetgeo.2016.05.024.MPEGD80264-8172CrossrefGoogle Scholar
  • Zadeh, M. K., N. H. Mondol, and J. Jahren, 2017, Velocity anisotropy of Upper Jurassic organic-rich shales, Norwegian Continental Shelf: Geophysics, 82, no. 2, C61–C75, doi: 10.1190/geo2016-0035.1.GPYSA70016-8033AbstractGoogle Scholar
  • Zhao, L., X. Qin, D.-H. Han, J. Geng, Z. Yang, and H. Cao, 2016, Rock-physics modeling for the elastic properties of organic shale at different maturity stages: Geophysics, 81, no. 5, D527–D541, doi: 10.1190/geo2015-0713.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Zhao, L., X. Qin, J. Zhang, X. Liu, D.-H. Han, J. Geng, and Y. Xiong, 2018, An effective reservoir parameter for seismic characterization of organic shale reservoir: Surveys in Geophysics, 39, 509–541, doi: 10.1007/s10712-017-9456-9.SUGEEC0169-3298CrossrefWeb of ScienceGoogle Scholar
  • Zhu, Y., S. Xu, M. Payne, A. Martinez, E. Liu, C. Harris, and K. Bandyopadhyay, 2012, Improved rock-physics model for shale gas reservoirs: 82nd Annual International Meeting, SEG, Expanded Abstracts, doi: 10.1190/segam2012-0927.1.AbstractGoogle Scholar
  • Ziegler, P. A., 1992, North Sea rift system: Tectonophysics, 208, 55–75, doi: 10.1016/0040-1951(92)90336-5.TCTOAM0040-1951CrossrefGoogle Scholar