This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Investigation of the methane adsorption characteristics of marine organic-rich shale: A case study of the lower Cambrian Niutitang Shale in the Fenggang block, northern Guizhou Province, South China

Authors:

The marine shale in South China has great gas exploration potential, and exploration in the Sichuan Basin has been successful, but the degree of exploration remains low in the Guizhou Province. We used organic geochemical analyses (total organic carbon content and kerogen type), scanning electron microscopy (SEM), field emission SEM, nuclear magnetic resonance (NMR), X-ray diffraction analysis, and low-temperature CO2 and N2 adsorption experimental methods to study the micropore types and pore structures and their effects on the methane adsorption capacity of organic-rich shales found in the Fenggang block in northern Guizhou Province. The results indicate that the microscopic surface porosity of the lower Cambrian Niutitang Formation ranges from 2.88% to 5.34%, with an average value of 3.86%. Based on nitrogen adsorption methods, the range of the average pore size distribution is 4.6–9.491 nm, with an average value of 6.68 nm. All of the samples exhibit significant unimodal distributions. The main pore size is less than 10 nm, and these pores account for most of the mesopore volume, which is generally consistent with the NMR results. The methane adsorption capacity of the shale samples gradually increases in the range of 0–8 MPa at 30°C and reaches a maximum at approximately 10 MPa. Positive correlations were found between the gas content and specific surface area, total pore volume, and micropore volume. These strong correlations indicate that the Niutitang Shale has a high specific surface area, a high pore volume, and narrow-diameter pores, demonstrating that it has a high gas adsorption capacity. The results of this study provide valuable information regarding the adsorption characteristics of marine shales and the factors that affect those characteristics.

References

  • Aljamaan, H., M. A. Ismail, and A. R. Kovscek, 2016, Experimental investigation and Grand Canonical Monte Carlo simulation of gas shale adsorption from the macro to the nano scale: Journal of Natural Gas Science & Engineering, 48, 119–137, doi: 10.1016/j.jngse.2016.12.024.CrossrefWeb of ScienceGoogle Scholar
  • Aringhieri, R., 2004, Nanoporosity characteristics of some natural clay minerals and soils: Clays and Clay Minerals, 52, 700–704, doi: 10.1346/CCMN.2004.0520604.CLCMAB0009-8604CrossrefWeb of ScienceGoogle Scholar
  • Barrett, E. P., L. G. Joyner, and P. P. Halenda, 1951, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms: Journal of the American Chemical Society, 73, 373–380, doi: 10.1021/ja01145a126.JACSAT0002-7863CrossrefWeb of ScienceGoogle Scholar
  • Brunauer, S., P. H. Emmett, and E. Teller, 1938, Adsorption of gases in multimolecular layers: Journal of the American Chemical Society, 60, 309–319, doi: 10.1021/ja01269a023.JACSAT0002-7863CrossrefGoogle Scholar
  • Bustin, A. M., and R. M. Bustin, 2008, Coal reservoir saturation: Impact of temperature and pressure: AAPG Bulletin, 92, 77–86, doi: 10.1306/08270706133.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Cardott, B. J., 2012, Thermal maturity of woodford shale gas and oil plays, Oklahoma, USA: International Journal of Coal Geology, 103, 109–119, doi: 10.1016/j.coal.2012.06.004.IJCGDE0166-5162CrossrefWeb of ScienceGoogle Scholar
  • Chalmers, G. R., and R. M. Bustin, 2008, Lower Cretaceous gas shales in northeastern British Columbia. Part I: Geological controls on methane sorption capacity: Bulletin of Canadian Petroleum Geology, 56, 1–21, doi: 10.2113/gscpgbull.56.1.1.BCPGAI0007-4802CrossrefWeb of ScienceGoogle Scholar
  • Chalmers, G. R., R. M. Bustin, and I. M. Power, 2012, Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units: AAPG Bulletin, 96, 1099–1119, doi: 10.1306/10171111052.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Chalmers, G. R. L., and R. M. Bustin, 2007, The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia: International Journal of Coal Geology, 70, 223–239, doi: 10.1016/j.coal.2006.05.001.IJCGDE0166-5162CrossrefWeb of ScienceGoogle Scholar
  • Chen, J., and X. M. Xiao, 2014, Evolution of nanoporosity in organic-rich shales during thermal maturation: Fuel, 129, 173–181, doi: 10.1016/j.fuel.2014.03.058.FUELAC0016-2361CrossrefWeb of ScienceGoogle Scholar
  • Chermak, J. A., and M. E. Schriber, 2014, Mineralogy and trace element geochemistry of gas shales in the United States: Environmental implications: International Journal of Coal Geology, 126, 32–44, doi: 10.1016/j.coal.2013.12.005.IJCGDE0166-5162CrossrefWeb of ScienceGoogle Scholar
  • Curtis, J. B., 2002, Fractured shale-gas systems: AAPG Bulletin, 86, 1921–1938.AABUD20149-1423Web of ScienceGoogle Scholar
  • Dong, D., C. Zou, H. Yang, Y. Wang, X. Li, G. Cheng, S. Wang, Z. Lv, and Y. Huang, 2012, Progress and prospects of shale gas exploration and development in China: Acta Petrologica Sinica, 33, 107–114.Google Scholar
  • Dubinin, M. M., 1967, Adsorption in micropores: Journal of Colloid and Interface Science, 23, 487–499, doi: 10.1016/0021-9797(67)90195-6.JCISA50021-9797CrossrefWeb of ScienceGoogle Scholar
  • Galvis, H., D. Becerra, and R. Slatt, 2018, Lithofacies and stratigraphy of a complete Woodford Shale outcrop section in South Central Oklahoma: Geologic considerations for the evaluation of unconventional shale reservoirs: Interpretation, 6, no. 1, SC15–SC27, doi: 10.1190/INT-2017-0074.1.AbstractGoogle Scholar
  • Gasparik, M., P. Bertier, Y. Gensterblum, A. Ghanizadeh, B. M. Krooss, and R. Littke, 2014, Geological controls on the methane storage capacity in organic-rich shales: International Journal of Coal Geology, 123, 34–51, doi: 10.1016/j.coal.2013.06.010.IJCGDE0166-5162CrossrefWeb of ScienceGoogle Scholar
  • Gasparik, M., A. Ghanizadeh, P. Bertier, Y. Gensterblum, S. Bouw, and B. M. Krooss, 2012, High-pressure methane sorption isotherms of black shales from the Netherlands: Energy Fuels, 26, 4995–5004, doi: 10.1021/ef300405g.CrossrefWeb of ScienceGoogle Scholar
  • Gregg, S. J., and K. S. W. Sing, 1982, Adsorption, surface area and porosity, 2nd ed.: Academic Press.Google Scholar
  • Han, C., Z. Jiang, M. Han, M. Wu, and W. Lin, 2016, The lithofacies and reservoir characteristics of the Upper Ordovician and Lower Silurian black shale in the Southern Sichuan Basin and its periphery, China: Marine & Petroleum Geology, 75, 181–191, doi: 10.1016/j.marpetgeo.2016.04.014.CrossrefWeb of ScienceGoogle Scholar
  • Hao, F., H. Zou, and Y. Lu, 2013, Mechanisms of shale gas storage: Implications for shale gas exploration in China: AAPG Bulletin, 97, 1325–1346, doi: 10.1306/02141312091.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Herzig, P. M., K. P. Becker, P. Stoffers, H. Bäcker, and N. Blum, 1988, Hydrothermal silica chimney fields in the Galapagos Spreading Center at 86°W: Earth & Planetary Science Letters, 89, 261–272, doi: 10.1016/0012-821X(88)90115-X.CrossrefWeb of ScienceGoogle Scholar
  • Holmes, R., E. C. Rupp, V. Vishal, and J. Wilcox, 2017, Selection of shale preparation protocol and outgas procedures for applications in low-pressure analysis: Energy & Fuels, 31, 9043–9051, doi: 10.1021/acs.energyfuels.7b01297.CrossrefWeb of ScienceGoogle Scholar
  • Hu, H., T. Zhang, J. D. Wiggins-Camacho, G. S. Ellis, M. D. Lewan, and X. Zhang, 2015, Experimental investigation of changes in methane adsorption of bitumen-free woodford shale with thermal maturation induced by hydrous pyrolysis: Marine & Petroleum Geology, 59, 114–128, doi: 10.1016/j.marpetgeo.2014.07.029.CrossrefWeb of ScienceGoogle Scholar
  • Jarvie, D. M., R. J. Hill, T. E. Ruble, and R. M. Pollastro, 2007, Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment: AAPG Bulletin, 91, 475–499, doi: 10.1306/12190606068.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Krooss, B. M., F. Van Bergen, Y. Gensterblum, N. Siemons, H. J. Pagnier, and P. David, 2002, High-pressure methane and carbon dioxide adsorption on dry and moisture equilibrated Pennsylvanian coals: International Journal of Coal Geology, 51, 69–92, doi: 10.1016/S0166-5162(02)00078-2.IJCGDE0166-5162CrossrefWeb of ScienceGoogle Scholar
  • Kuila, U., D. K. McCarty, A. Derkowski, T. B. Fischer, T. Topor, and M. Prasad, 2014, Nano-scale texture and porosity of organic matter and clay minerals in organic rich mudrocks: Fuel, 135, 359–373, doi: 10.1016/j.fuel.2014.06.036.FUELAC0016-2361CrossrefWeb of ScienceGoogle Scholar
  • Kumar, V., C. H. Sondergeld, and C. S. Rai, 2012, Nano to macro mechanical characterization of shale: Annual Technical Conference and Exhibition, SPE, Extended Abstracts, 3421–3443.Google Scholar
  • Langmuir, I., 1918, The adsorption of gases on plane surfaces of glass, mica and platinum: Journal of the American Chemical Society, 40, 1361–1403, doi: 10.1021/ja02242a004.JACSAT0002-7863CrossrefGoogle Scholar
  • Li, A., W. Ding, J. He, P. Dai, S. Yin, and F. Xie, 2016, Investigation of pore structure and fractal characteristics of organic-rich shale reservoirs: A case study of Lower Cambrian Qiongzhusi formation in Malong block of eastern Yunnan Province, South China: Marine & Petroleum Geology, 70, 46–57, doi: 10.1016/j.marpetgeo.2015.11.004.CrossrefWeb of ScienceGoogle Scholar
  • Li, J., B. Yu, J. Zhang, Y. Li, and J. Wu, 2012, Reservoir characteristics and their influence factors of the Lower Cambrian dark shale in northern Guizhou: Oil & Gas Geology, 33, 364–374.Google Scholar
  • Liang, X., T. Zhang, Y. Yang, C. Zhang, Q. Gong, X. Ye, and J. Zhang, 2014, Microscopic pore structure and its controlling factors of overmature shale in the Lower Cambrian Qiongzhusi Fm, northern Yunnan and Guizhou provinces of China: Natural Gas Industry, 34, 18–26.Google Scholar
  • Liu, S., W. Ma, J. Luba, W. Huang, X. Zeng, and C. Zhang, 2011, Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, East Sichuan Basin, China: Acta Petrologica Sinica, 27, 2239–2252.Web of ScienceGoogle Scholar
  • Loucks, R. G., R. M. Reed, S. C. Ruppel, and U. Hammes, 2012, Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores: AAPG Bulletin, 96, 1071–1098, doi: 10.1306/08171111061.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Loucks, R. G., and S. C. Ruppel, 2007, Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas: AAPG Bulletin, 91, 579–601, doi: 10.1306/11020606059.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Lu, X., F. Li, and A. T. Watson, 1995, Adsorption measurements in Devonian shales: Fuel, 74, 599–603, doi: 10.1016/0016-2361(95)98364-K.FUELAC0016-2361CrossrefWeb of ScienceGoogle Scholar
  • Manger, K. C., and J. B. Curtis, 1991, Geologic influences on location and production of Antrim Shale gas: Devonian Gas Shales Technology Review, 7, 5–16.Google Scholar
  • Mao, J., X. Li, Y. Shan, B. Wang, T. Jing, S. Huang, L. Zhu, and M. Ge, 2012, Shale gas accumulation conditions of Eastern Region of Liaohe Depression: Earth Science Frontiers, 19, 348–355.Google Scholar
  • Marchig, V., H. Gundlach, P. Möller, and F. Schley, 1982, Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments: Marine Geology, 50, 241–256, doi: 10.1016/0025-3227(82)90141-4.MAGEA60025-3227CrossrefWeb of ScienceGoogle Scholar
  • Mendhe, V. A., A. D. Kamble, M. Bannerjee, S. Mishra, S. Mukherjee, and P. Mishra, 2016a, Evaluation of shale gas reservoir in Barakar and barren measures formations of north and south Karanpura Coalfields, Jharkhand: Journal of the Geological Society of India, 88, 305–316, doi: 10.1007/s12594-016-0493-7.JGSIAJ0016-7622CrossrefWeb of ScienceGoogle Scholar
  • Mendhe, V. A., S. Mishra, A. K. Varma, A. D. Kamble, M. Bannerjee, and T. Sutay, 2016b, Gas reservoir characteristics of the Lower Gondwana Shales in Raniganj Basin of Eastern India: Journal of Petroleum Science & Engineering, 149, 649–664, doi: 10.1016/j.petrol.2016.11.008.CrossrefWeb of ScienceGoogle Scholar
  • Merkel, A., R. Fink, and R. Littke, 2016, High pressure methane sorption characteristics of lacustrine shales from the Midland Valley Basin, Scotland: Fuel, 182, 361–372, doi: 10.1016/j.fuel.2016.05.118.FUELAC0016-2361CrossrefWeb of ScienceGoogle Scholar
  • Milliken, K. L., M. Rudnicki, D. N. Awwiller, and T. Zhang, 2013, Organic matter-hosted pore system, Marcellus formation (Devonian), Pennsylvania: AAPG Bulletin, 97, 177–200, doi: 10.1306/07231212048.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Mosher, K., J. He, Y. Liu, E. Rupp, and J. Wilcox, 2013, Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems: International Journal of Coal Geology, 109–110, 36–44, doi: 10.1016/j.coal.2013.01.001.IJCGDE0166-5162CrossrefWeb of ScienceGoogle Scholar
  • Prinz, D., and R. Littke, 2005, Development of the micro-and ultramicroporous structure of coals with rank as deduced from the accessibility to water: Fuel, 84, 1645–1652.FUELAC0016-2361Web of ScienceGoogle Scholar
  • Psarras, P., R. Holmes, V. Vishal, and J. Wilcox, 2017, Methane and CO2 adsorption capacities of kerogen in the eagle ford shale from molecular simulation: Accounts of Chemical Research, 50, 1818–1828, doi: 10.1021/acs.accounts.7b00003.ACHRE40001-4842CrossrefWeb of ScienceGoogle Scholar
  • Ramos, S., 2004, The effect of shale composition on the gas sorption potential of organic-rich mudrocks in the Western Canadian sedimentary basin: University of British Columbia.Google Scholar
  • Rexer, T. F., M. J. Benham, A. C. Aplin, and K. M. Thomas, 2013, Methane adsorption on shale under simulated geological temperature and pressure conditions: Energy Fuels, 27, 3099–3109, doi: 10.1021/ef400381v.CrossrefWeb of ScienceGoogle Scholar
  • Rexer, T. F., E. J. Mathia, A. C. Aplin, and K. M. Thomas, 2014, High-pressure methane adsorption and characterization of pores in Posidonia shales and isolated kerogens: Energy Fuels, 28, 2886–2901, doi: 10.1021/ef402466m.CrossrefWeb of ScienceGoogle Scholar
  • Robert, G. L., M. R. Robert, C. R. Stephen, and H. Ursula, 2012, Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores: AAPG Bulletin, 96, 1071–1098, doi: 10.1306/08171111061.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Rooger, M. S., and R. O. Neal, 2011, Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks: AAPG Bulletin, 95, 2017–2030, doi: 10.1306/03301110145.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Ross, D. J. K., and R. M. Bustin, 2007, Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada: Bulletin of Canada Petroleum Geology, 55, 51–75, doi: 10.2113/gscpgbull.55.1.51.CrossrefWeb of ScienceGoogle Scholar
  • Ross, D. J. K., and R. M. Bustin, 2009, The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs: Marine and Petroleum Geology, 26, 916–927, doi: 10.1016/j.marpetgeo.2008.06.004.MPEGD80264-8172CrossrefWeb of ScienceGoogle Scholar
  • Schettler, P. D., and C. R. Parmely, 1990, The measurement of gas desorption isotherms for Devonian shale: Gas Shales Technology Review, 7, 4–9.Google Scholar
  • Slatt, R. M., and N. R. O’Brien, 2011, Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks: AAPG Bulletin, 95, 2017–2030, doi: 10.1306/03301110145.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Suaŕ ez-Ruiz, I., J. Tatiana, S. G. Fabiań, M. Robert, and R. Begoña, 2016, Porosity development and the influence of pore size on the CH4, adsorption capacity of a shale oil reservoir (Upper Cretaceous) from Colombia. Role of solid bitumen: International Journal of Coal Geology, 159, 1–17, doi: 10.1016/j.coal.2016.03.020.IJCGDE0166-5162CrossrefWeb of ScienceGoogle Scholar
  • Tang, S., E. Fan, S. Zhang, and W. Jiang, 2016, Reservoir characteristics and gas-bearing capacity of the Lower Palaeozoic marine shales in Northwestern Hunan: Earth Science Frontiers, 23, 135–146.Google Scholar
  • Tang, X., J. C. Zhang, X. Z. Wang, B. S. Yu, W. L. Ding, J. Y. Xiong, Y. T. Yang, L. Wang, and C. Yang, 2014, Shale characteristics in the Southeastern Ordos Basin, China: Implications for hydrocarbon accumulation conditions and the potential of continental shales: International Journal of Coal Geology, 128–129, 32–46, doi: 10.1016/j.coal.2014.03.005.IJCGDE0166-5162CrossrefWeb of ScienceGoogle Scholar
  • Tian, H., S. Zhang, S. Liu, and H. Zhang, 2012, Determination of organic-rich shale pore features by mercury injection and gas adsorption methods: Acta Petrolei Sinica, 33, 419–427.Google Scholar
  • Wang, B., X. S. Lin, Y. J. Bao, H. Han, and H. P. Wang, 1996, SY/T 6210-1996, Quantitative analysis of total contents of clay minerals and common non-clay minerals in sedimentary rocks by X-ray diffraction: Petroleum Industry Press.Google Scholar
  • Wang, R., W. Ding, D. Gong, W. Zeng, X. Wang, X. Zhou, A. Li, and Z. Xiao, 2016b, Development characteristics and major controlling factors of shale fractures in the Lower Cambrian Niutitang Formation, southeastern Chongqing-northern Guizhou area: Acta Petrolei Sinica, 37, 832–845, 877, doi: 10.7623/syxb201607002.CrossrefGoogle Scholar
  • Wang, R., Y. Gu, W. Ding, D. Gong, S. Yin, X. Wang, X. Zhou, A. Li, Z. Xiao, and Z. Cui, 2016a, Characteristics and dominant controlling factors of organic-rich marine shales with high thermal maturity: A case study of the Lower Cambrian Niutitang Formation in the cen’gong block, Southern China: Journal of Natural Gas Science & Engineering, 33, 81–96, doi: 10.1016/j.jngse.2016.05.009.CrossrefWeb of ScienceGoogle Scholar
  • Wang, S., Z. Song, T. Cao, and X. Song, 2013, The methane sorption capacity of Paleozoic shales from the Sichuan Basin, China: Marine & Petroleum Geology, 44, 112–119, doi: 10.1016/j.marpetgeo.2013.03.007.CrossrefWeb of ScienceGoogle Scholar
  • Wang, Y., Y. Zhu, S. Liu, and R. Zhang, 2016c, Pore characterization and its impact on methane adsorption capacity for organic-rich marine shales: Fuel, 181, 227–237, doi: 10.1016/j.fuel.2016.04.082.FUELAC0016-2361CrossrefWeb of ScienceGoogle Scholar
  • Wu, J., B. Yu, and Y. Li, 2012, Adsorption capacity of shale gas and controlling factors from the Well Yuye 1 at the southeast of Chongqing: Journal of Southwest Petroleum University (Science & Technology Edition), 34, 40–48.Google Scholar
  • Xu, G. J., Y. Gao, S. H. Dong, and D. L Wang, 2003, GB/T 19145-2003, Determination of total organic carbon in sedimentary rock: Standards Press of China.Google Scholar
  • Yang, F., Z. Ning, R. Zhang, H. Zhao, and B. M. Krooss, 2015, Investigations on the methane sorption capacity of marine shales from Sichuan Basin, China: International Journal of Coal Geology, 146, 104–117, doi: 10.1016/j.coal.2015.05.009.IJCGDE0166-5162CrossrefWeb of ScienceGoogle Scholar
  • Yang, R., S. He, Q. Hu, D. Hu, S. Zhang, and J. Yi, 2016, Pore characterization and methane sorption capacity of over-mature organic-rich Wufeng and Longmaxi shales in the southeast Sichuan Basin, China: Marine & Petroleum Geology, 77, 247–261, doi: 10.1016/j.marpetgeo.2016.06.001.CrossrefWeb of ScienceGoogle Scholar
  • Yao, Y., D. Liu, Y. Che, D. Tang, S. Tang, and W. Huang, 2010, Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR): Fuel, 89, 1371–1380, doi: 10.1016/j.fuel.2009.11.005.FUELAC0016-2361CrossrefWeb of ScienceGoogle Scholar
  • Zhang, Q., R. Liu, Z. Pang, W. Lin, W. Bai, and H. Wang, 2016, Characterization of microscopic pore structures in Lower Silurian black shale (S1l), southeastern Chongqing, China: Marine and Petroleum Geology, 71, 250–259, doi: 10.1016/j.marpetgeo.2015.12.015.MPEGD80264-8172CrossrefWeb of ScienceGoogle Scholar
  • Zhang, T., G. S. Ellis, S. C. Ruppel, K. Milliken, and R. Yang, 2012, Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems: Organic Geochemistry, 47, 120–131, doi: 10.1016/j.orggeochem.2012.03.012.ORGEDE0146-6380CrossrefWeb of ScienceGoogle Scholar
  • Zhou, S., D. Liu, Y. Cai, and Y. Yao, 2016, Fractal characterization of pore-fracture in low-rank coals using a low-field NMR relaxation method: Fuel, 181, 218–226, doi: 10.1016/j.fuel.2016.04.119.FUELAC0016-2361CrossrefWeb of ScienceGoogle Scholar
  • Zhu, Y., Y. Wang, S. Chen, H. Zhang, and C. Fu, 2016, Qualitative-quantitative multiscale characterization of pore reservoirs: A case study of Longmaxi Formation in the Upper Yangtze area: Earth Science Frontiers, 23, 154–163.Google Scholar
  • Zou, C., R. Zhu, B. Bai, Z. Yang, S. Wu, L. Su, D. Dong, and X. Li, 2011, First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value: Acta Petrologica Sinica, 27, 1857–1864.Web of ScienceGoogle Scholar