This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Observations of azimuthal seismic anisotropy provide useful information, notably on stress orientation and the presence of preexisting natural fracture systems, during hydraulic fracturing operations. Seismic anisotropy can be observed through the measurement of S-wave splitting (SWS) on waveforms generated by microseismic events and recorded on downhole geophone arrays. We have developed measurements of azimuthal anisotropy from a Lower Paleozoic shale play in northern Poland. The observed orthorhombic anisotropic symmetry system is dominated by a vertically transverse isotropy (VTI) fabric, produced by the alignment of anisotropic platy clay minerals and by thin horizontal layering and overprinted by a weak azimuthal anisotropy. Despite the dominating VTI fabric, we successfully identified a weaker horizontal-transverse isotropy fabric striking east–southeast. We do this by constraining the rock-physics model inversion with VTI background parameters incorporated from other geophysical methods: microseismic velocity model inversion, 3D reflection seismic, and borehole cross-dipole sonic logs. The obtained orientation is consistent with a preexisting natural fracture set that has been observed using X-ray micro-imaging (XRMI) image logs from a nearby vertical well. The present-day regional maximum horizontal stress direction differs from the observed fracture strike by approximately 45°. This implies that the SWS measurements recorded during hydraulic stimulation of a shale-gas reservoir are imaging the preexisting natural fracture set, which influences the treatment efficiency, instead of the present-day stress.

References

  • Ando, M., Y. Ishikawa, and H. Wada, 1980, S-wave anisotropy in the upper mantle under a volcanic area in Japan: Nature, 286, 43–46, doi: 10.1038/286043a0.CrossrefWeb of ScienceGoogle Scholar
  • Backus, G. E., 1962, Long-wave elastic anisotropy produced by horizontal layering: Journal of Geophysical Research, 67, 4427–4440, doi: 10.1029/JZ067i011p04427.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Baird, A. F., J.-M. Kendall, Q. J. Fisher, and J. Budge, 2018, The role of texture, cracks, and fractures in highly anisotropic shales: Journal of Geophysical Research: Solid Earth, 122, 10341–10351, doi: 10.1002/2017JB014710.CrossrefWeb of ScienceGoogle Scholar
  • Baird, A. F., J.-M. Kendall, J. P. Verdon, A. Wuestefeld, T. E. Noble, Y. Li, M. Dutko, and Q. J. Fisher, 2013, Monitoring increases in fracture connectivity during hydraulic stimulations from temporal variations in shear wave splitting polarization: Geophysical Journal International, 195, 1120–1131, doi: 10.1093/gji/ggt274.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Bobek, K., and M. Jarosiński, 2018, Parallel structural interpretation of drill cores and microresistivity scanner images from gas-bearing shale (Baltic Basin, Poland): Interpretation, 6, no. 3, doi: 10.1190/int-2017-0211.1.AbstractGoogle Scholar
  • Crampin, S., 1985, Evaluation of anisotropy by shear-wave splitting: Geophysics, 50, 142–152, doi: 10.1190/1.1441824.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Crampin, S., R. Evans, B. Üçer, M. Doyle, J. P. Davis, G. B. Yegorkina, and A. Miller, 1980, Observations of dilatancy-induced polarization anomalies and earthquake prediction: Nature, 286, 874–877, doi: 10.1038/286874a0.CrossrefWeb of ScienceGoogle Scholar
  • Cyz, M., and M. Malinowski, 2018, Seismic azimuthal anisotropy study of the Lower Paleozoic shale play in Northern Poland: Interpretation, 6, no. 3, doi: 10.1190/int-2017-0200.1.AbstractGoogle Scholar
  • Ebrom, D., R. Tatham, K. K. Sekharan, J. A. McDonald, and G. H. F. Gardner, 1990, Hyperbolic traveltime analysis of first arrivals in an azimuthally anisotropic medium: A physical modeling study: Geophysics, 55, 185–191, doi: 10.1190/1.1442825.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Gajek, W., M. Malinowski, and J. P. Verdon, 2018, Results of the downhole microseismic monitoring at a pilot hydraulic fracturing site in Poland — Part 1: Events location and stimulation performance: Interpretation, 6, no. 3, doi: 10.1190/int-2017-0205.1.AbstractGoogle Scholar
  • Gajek, W., J. Trojanowski, and M. Malinowski, 2016, Advantages of probabilistic approach to microseismic events location — A case study from Northern Poland: 78th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.201600909.CrossrefGoogle Scholar
  • Gajek, W., J. P. Verdon, M. Malinowski, and J. Trojanowski, 2017, Imaging seismic anisotropy in a shale gas reservoir by combining microseismic and 3D surface reflection seismic data: 79th Annual International Conference and Exhibition, EAGE, Extended Abstracts, doi: 10.3997/2214-4609.201701689.CrossrefGoogle Scholar
  • Grechka, V., 2007, Multiple cracks in VTI rocks: Effective properties and fracture characterization: Geophysics, 72, no. 5, D81–D91, doi: 10.1190/1.2751500.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Grechka, V., P. Singh, and I. Das, 2011, Estimation of effective anisotropy simultaneously with locations of microseismic events: Geophysics, 76, no. 6, WC143–WC155, doi: 10.1190/geo2010-0409.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Grechka, V., and S. Yaskevich, 2014, Azimuthal anisotropy in microseismic monitoring: A Bakken case study: Geophysics, 79, no. 1, KS1–KS12, doi: 10.1190/geo2013-0211.1.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Gupta, I. N., 1973, Dilatancy and premonitory variations of P, S travel times: Bulletin of the Seismological Society of America, 63, 1157–1161.BSSAAP0037-1106CrossrefWeb of ScienceGoogle Scholar
  • Hall, S. A., J.-M. Kendall, J. Maddock, and Q. Fisher, 2008, Crack density tensor inversion for analysis of changes in rock frame architecture: Geophysical Journal International, 173, 577–592, doi: 10.1111/j.1365-246X.2008.03748.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Horne, S. A., 2003, Fracture characterization from walkaround VSPs: Geophysical Prospecting, 51, 493–499, doi: 10.1046/j.1365-2478.2003.00391.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Hudson, J., 1981, Wave speeds and attenuation of elastic waves in material containing cracks: Geophysical Journal of the Royal Astronomical Society, 64, 133–150, doi: 10.1111/j.1365-246X.1981.tb02662.x.GEOJAN0016-8009CrossrefWeb of ScienceGoogle Scholar
  • Jarosiński, M., 2005, Ongoing tectonic reactivation of the Outer Carpathians and its impact on the foreland: Results of borehole breakout measurements in Poland: Tectonophysics, 410, 189–216, doi: 10.1016/j.tecto.2004.12.040.TCTOAM0040-1951CrossrefWeb of ScienceGoogle Scholar
  • Johnston, J. E., and N. I. Christensen, 1995, Seismic anisotropy of shales: Journal of Geophysical Research: Solid Earth, 100, 5991–6003, doi: 10.1029/95JB00031.CrossrefWeb of ScienceGoogle Scholar
  • Kendall, J.-M., Q. J. Fisher, S. Covey Crump, J. Maddock, A. Carter, S. A. Hall, J. Wookey, S. L. A. Valcke, M. Casey, G. Lloyd, and W. Ben Ismail, 2007, Seismic anisotropy as an indicator of reservoir quality in siliciclastic rocks: Geological Society of London, Special Publications 292, 123–136.CrossrefGoogle Scholar
  • Kowalski, H., P. Godlewski, W. Kobusinski, W. Makarewicz, M. Podolak, A. Nowicka, Z. Mikolajewski, D. Chase, R. Dafni, A. Canning, and Z. Koren, 2014, Imaging and characterization of a shale reservoir onshore Poland, using full-azimuth seismic depth imaging: First Break, 32, 101–109.CrossrefGoogle Scholar
  • Liu, E., and A. Martinez, 2012, Seismic fracture characterization: Concepts and practical applications: EAGE.Google Scholar
  • Lonardelli, I., H.-R. Wenk, and Y. Ren, 2007, Preferred orientation and elastic anisotropy in shales: Geophysics, 72, no. 2, D33–D40, doi: 10.1190/1.2435966.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Lynn, H. B., W. E. Beckham, K. M. Simon, C. R. Bates, M. Layman, and M. Jones, 1999, P-wave and S-wave azimuthal anisotropy at a naturally fractured gas reservoir, Bluebell-Altamont Field, Utah: Geophysics, 64, 1312–1328, doi: 10.1190/1.1444636.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Lynn, H. B., and L. Thomsen, 1986, Shear-wave exploration along the principal axis: 56th Annual International Meeting, SEG, Expanded Abstracts, 473–476.Google Scholar
  • MacBeth, C., 2002, Multi-component VSP analysis for applied seismic anisotropy: Pergamon.Google Scholar
  • Martin, M. A., and T. L. Davis, 1987, Shear-wave birefringence: A new tool for evaluating fractured reservoirs: The Leading Edge, 6, 22–28, doi: 10.1190/1.1439333.AbstractGoogle Scholar
  • Miyazawa, M., R. Snieder, and A. Venkataraman, 2008, Application of seismic interferometry to extract P- and S-wave propagation and observation of shear-wave splitting from noise data at Cold Lake, Alberta, Canada: Geophysics, 73, no. 4, D35–D40, doi: 10.1190/1.2937172.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Mueller, M. C., 1991, Prediction of lateral variability in fracture intensity using multicomponent shear-wave surface seismic as a precursor to horizontal drilling in the Austin Chalk: Geophysical Journal International, 107, 409–415, doi: 10.1111/j.1365-246X.1991.tb01402.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Mueller, M. C., A. J. Boyd, and C. Esmersoy, 1994, Case studies of the dipole shear anisotropy log: 64th Annual International Meeting, SEG, Expanded Abstracts, 1143–1146.AbstractGoogle Scholar
  • Naar, W. N., J. B. Schechter, and L. Thompson, 2006, Naturally fractured reservoir characterization: SPE.Google Scholar
  • Nur, A., and G. Simmons, 1969, Stress-induced velocity anisotropy in rock: An experimental study: Journal of Geophysical Research, 74, 6667–6674, doi: 10.1029/JB074i027p06667.JGREA20148-0227CrossrefWeb of ScienceGoogle Scholar
  • Patterson, D., and X. M. Tang, 2001, Shear wave anisotropy measurement using cross-dipole acoustic logging: An overview: Petrophysics, 42, 107–117.Google Scholar
  • Rial, J. A., M. Elkibbi, and M. Yang, 2005, Shear-wave splitting as a tool for the characterization of geothermal fractured reservoirs: Lessons learned: Geothermics, 34, 365–385, doi: 10.1016/j.geothermics.2005.03.001.GTMCAT0375-6505CrossrefWeb of ScienceGoogle Scholar
  • Savage, M. K., 1999, Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Reviews of Geophysics, 37, 65–106, doi: 10.1029/98RG02075.REGEEP8755-1209CrossrefWeb of ScienceGoogle Scholar
  • Silver, P. G., and W. W. Chan, 1991, Shear wave splitting and subcontinental mantle deformation: Journal of Geophysical Research: Solid Earth, 96, 16429–16454, doi: 10.1029/91JB00899.CrossrefWeb of ScienceGoogle Scholar
  • Tarantola, A., 2005, Inverse problem theory and methods for model parameter estimation: SIAM.CrossrefGoogle Scholar
  • Teanby, N. A., J.-M. Kendall, and M. van der Baan, 2004, Automation of shear-wave splitting measurements using cluster analysis: Bulletin of the Seismological Society of America, 94, 453–463, doi: 10.1785/0120030123.BSSAAP0037-1106CrossrefWeb of ScienceGoogle Scholar
  • Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954–1966, doi: 10.1190/1.1442051.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Thomsen, L., 2002, Understanding seismic anisotropy in exploration and exploitation: SEG.AbstractGoogle Scholar
  • Tillotson, P., J. Sothcott, A. I. Best, M. Chapman, and X. Y. Li, 2012, Experimental verification of the fracture density and shear-wave splitting relationship using synthetic silica cemented sandstones with a controlled fracture geometry: Geophysical Prospecting, 60, 516–525, doi: 10.1111/j.1365-2478.2011.01021.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Tsvankin, I., 1997, Anisotropic parameters and P-wave velocity for orthorhombic media: Geophysics, 62, 1292–1309, doi: 10.1190/1.1444231.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Usher, P. J., A. F. Baird, and J.-M. Kendall, 2015, Shear-wave splitting in highly anisotropic shale gas formations: 85th Annual International Meeting, SEG, Expanded Abstracts, 2435–2439.AbstractGoogle Scholar
  • Verdon, J. P., D. A. Angus, J.-M. Kendall, and S. A. Hall, 2008, The effect of microstructure and nonlinear stress on anisotropic seismic velocities: Geophysics, 73, no. 4, D41–D51, doi: 10.1190/1.2931680.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Verdon, J. P., and J.-M. Kendall, 2011, Detection of multiple fracture sets using observations of shear-wave splitting in microseismic data: Geophysical Prospecting, 59, 593–608, doi: 10.1111/j.1365-2478.2010.00943.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Verdon, J. P., J.-M. Kendall, D. J. White, and D. A. Angus, 2011, Linking microseismic event observations with geomechanical models to minimize the risks of storing CO2 in geological formations: Earth and Planetary Science Letters, 305, 143–152, doi: 10.1016/j.epsl.2011.02.048.EPSLA20012-821XCrossrefWeb of ScienceGoogle Scholar
  • Verdon, J. P., J.-M. Kendall, and A. Wuestefeld, 2009, Imaging fractures and sedimentary fabrics using shear wave splitting measurements made on passive seismic data: Geophysical Journal International, 179, 1245–1254, doi: 10.1111/j.1365-246X.2009.04347.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Verdon, J. P., and A. Wuestefeld, 2013, Measurement of the normal/tangential fracture compliance ratio (ZN/ZT) during hydraulic fracture stimulation using S-wave splitting data: Geophysical Prospecting, 61, 461–475, doi: 10.1111/j.1365-2478.2012.01132.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Vinnik, L. P., R. Kind, G. L. Kosarev, and L. I. Makeyeva, 1989, Azimuthal anisotropy in the lithosphere from observations of long-period S-waves: Geophysical Journal International, 99, 549–559, doi: 10.1111/j.1365-246X.1989.tb02039.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Wang, Z., 2001, Seismic anisotropy in sedimentary rocks: 71st Annual International Meeting, SEG, Expanded Abstracts, 1740–1743.AbstractGoogle Scholar
  • Willis, H., G. Rethford, and E. Bielanski, 1986, Azimuthal anisotropy: The occurrence and effect on shear wave data quality: 56th Annual International Meeting, SEG, Expanded Abstracts, 479–481.AbstractGoogle Scholar
  • Wolfe, C. J., and P. G. Silver, 1998, Seismic anisotropy of oceanic upper mantle: Shear wave splitting methodologies and observations: Journal of Geophysical Research: Solid Earth, 103, 749–771, doi: 10.1029/97JB02023.CrossrefWeb of ScienceGoogle Scholar
  • Wuestefeld, A., O. Al-Harrasi, J. P. Verdon, J. Wookey, and J. M. Kendall, 2010, A strategy for automated analysis of passive microseismic data to image seismic anisotropy and fracture characteristics: Geophysical Prospecting, 58, 755–773, doi: 10.1111/j.1365-2478.2010.00891.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Wuestefeld, A., J. M. Kendall, J. P. Verdon, and A. van As, 2011, In situ monitoring of rock fracturing using shear wave splitting analysis: An example from a mining setting: Geophysical Journal International, 187, 848–860, doi: 10.1111/j.1365-246X.2011.05171.x.GJINEA0956-540XCrossrefWeb of ScienceGoogle Scholar
  • Xu, S., and M. S. King, 1989, Shear-wave birefringence and directional permeability in fractured rock: Scientific Drilling, 1, 27–33.SCDRECGoogle Scholar