This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.


We have tested brittleness prediction by integrating well and 3D seismic data using machine learning (proximal support vector machine algorithm) for Lower Paleozoic shales from the Baltic Basin in northern Poland. The workflow allowed for differentiation of the brittle and ductile zones of the thin shale layers, as well as mapping of the marly formation (fracture barrier) with superior resolution as compared with the resolution of the original input seismic data. The important part of the success was the appropriate definition of the mineralogical brittleness index (BI) tailored to the local geologic conditions. The obtained BI volume outlines the more and less brittle zones in the lower shale unit, i.e., the Sasino Formation, as well as the overlaying unit with high values of BI (Prabuty marls). The mechanical BI based on the Young’s modulus and Poisson’s ratio did not deliver the desired brittleness characterization of the formations of interest, which confirms the weakness of estimating BI using the above geomechanical measurements alone. The weak point of the reported analysis is the small number of available wells, which makes the prediction’s statistics unsatisfactory.


  • Aimene, Y. E., and A. Ouenes, 2015, Geomechanical modeling of hydraulic fractures interacting with natural fractures — Validation with microseismic and tracer data from the Marcellus and Eagle Ford: Interpretation, 3, no. 3, SU71–SU88, doi: 10.1190/INT-2014-0274.1.AbstractGoogle Scholar
  • Altindag, R., 2003, Correlation of specific energy with rock brittleness concepts on rock cutting: Journal of the Southern African Institute of Mining and Metallurgy, 103, 163–171.Google Scholar
  • Barnes, A. E., and K. J. Laughlin, 2002, Investigation of methods for unsupervised classification of seismic data: 72nd Annual International Meeting, SEG, Expanded Abstracts, 2221–2224, doi: 10.1190/1.1817152.AbstractGoogle Scholar
  • Chopra, S., R. K. Sharma, J. Keay, and K. J. Marfurt, 2012, Shale gas reservoir characterization workflows: 82nd Annual International Meeting, SEG, Expanded Abstracts, 1–5, doi: 10.1190/segam2012-1344.1.AbstractGoogle Scholar
  • Cyz, M., and M. Malinowski, 2018, Seismic azimuthal anisotropy study of the Lower Paleozoic Shale Play in Northern Poland: Interpretation, 6, this issue, doi: 10.1190/INT-2017-0203.1.Google Scholar
  • Fung, G. M., and O. L. Mangasarian, 2005, Multicategory proximal support vector machine classifiers: Machine Learning, 59, 77–97, doi: 10.1007/s10994-005-0463-6.MALEEZ0885-6125CrossrefWeb of ScienceGoogle Scholar
  • Hampson, D. P., B. H. Russell, and B. Bankhead, 2005, Simultaneous inversion of pre-stack seismic data: 75th Annual International Meeting, SEG, Expanded Abstracts, 1633–1637.AbstractGoogle Scholar
  • Jarvie, D. M., R. J. Hill, T. E. Ruble, and R. M. Pollastro, 2007, Unconventional shale-gas systems: The Mississippian Barnett Shale of North-Central Texas as one model for thermogenic shale-gas assessment: AAPG Bulletin, 91, 475–499, doi: 10.1306/12190606068.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Kias, E., R. Maharidge, and R. Hurt, 2015, Mechanical versus mineralogical brittleness index across various shale plays: Presented at the Annual Technical Conference and Exhibition, SPE, 174781.CrossrefGoogle Scholar
  • Kowalski, H., P. Godlewski, W. Kobusinski, W. Makarewicz, M. Podolak, A. Nowicka, Z. Mikolajewski, D. Chase, R. Dafni, A. Canning, and Z. Koren, 2014, Imaging and characterization of a shale reservoir onshore Poland, using full-azimuth seismic depth: First Break, 32, 101–109.CrossrefGoogle Scholar
  • Kuzma, H. A., and J. W. Rector, 2004, Non-linear AVO inversion using support vector machines: 74th Annual International Meeting, SEG, Expanded Abstracts, 203–206.AbstractGoogle Scholar
  • Mavko, G., T. Mukerji, and J. Dvorkin, 2009, The rock physics handbook, 2nd ed.: Cambridge University Press.CrossrefGoogle Scholar
  • Modliński, Z., 2010, Atlas map paleomiąższościowo-paleolito-facjalnych paleozoiku podpermskiego kratonu wschodnioeuropejskiego w Polsce i na obszarach sąsiednich: Państwowy Instytut Geologiczny.Google Scholar
  • Ouenes, A., 2012, Seismically driven characterization of unconventional shale plays: CSEG Recorder, 37, 22–28.Google Scholar
  • Pachytel, R. W., M. Jarosiński, and K. Bobek, 2017, Geomechanical stratification in a shale reservoir and its correlation with natural fractures: Case from Pomeranian Basin (Poland): 51st U.S. Rock Mechanics/Geomechanics Symposium, ARMA, 17–77.Google Scholar
  • Perez, R., 2013, Brittleness estimation from seismic measurements in unconventional reservoirs: Application to the Barnett Shale: Ph.D. dissertation, University of Oklahoma.Google Scholar
  • Perez, R., and K. Marfurt, 2014, Mineralogy based brittleness prediction from surface seismic data: Application to the Barnett Shale: Interpretation, 2, no. 4, T255–T271, doi: 10.1190/INT-2013-0161.1.AbstractGoogle Scholar
  • Podhalańska, T., M. I. Waksmundzka, A. Becker, J. Roszkowska-Remin, I. Dyrka, A. Feldman-Olszewska, A. Głuszyński, I. Grotek, M. Janas, P. Karcz, G. Nowak, J. Pacześna, M. Roman, M. Sikorska-Jaworowska, M. Kuberska, A. Kozłowska, and K. Sobień, 2016, Prospective zones for unconventional hydrocarbon resources in Cambrian, Ordovician, Silurian and Carboniferous rocks of Poland — Integration of the research results: Przegląd Geologiczny, 64, 1008–1021.Google Scholar
  • Poprawa, P., 2010, Shale gas potential of the Lower Palaeozoic complex in the Baltic and Lublin-Podlasie basins (Poland): Przeglad Geologiczny, 58, 226–249.PRZGALGoogle Scholar
  • Rickman, R., M. J. Mullen, J. E. Petre, W. V. Grieser, and D. Kundert, 2008, A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale: Presented at the Annual Technical Conference and Exhibition, SPE, 115258.CrossrefGoogle Scholar
  • Roden, R., and D. Sacrey, 2016, Seismic interpretation with machine learning: GeoExPro, 13, 50–52.Google Scholar
  • Röth, G., and A. Tarantola, 1994, Neural networks and inversion of seismic data: Journal of Geophysical Research, 99, 6753–6768, doi: 10.1029/93JB01563.CrossrefGoogle Scholar
  • Rybacki, E., T. Meier, and G. Dresen, 2016, What controls the mechanical properties of shale rocks? — Part II: Brittleness: Journal of Petroleum Science and Engineering, 144, 39–58.CrossrefGoogle Scholar
  • Smith, T. A., and K. J. Marfurt, 2017, Machine learning, multiattribute 3-D analysis revolutionizing interpretation: The American Oil & Gas Reporter, July 2017.Google Scholar
  • Thomsen, L. A., 2012, On the use of isotropic parameters λ, E, ν to understand anisotropic shale behaviour: International Geophysical Conference and Oil & Gas Exhibition, 1–4, doi: 10.1190/IST092012-001.90.AbstractGoogle Scholar
  • Tiryaki, B., 2006, Evaluation of the indirect measures of rock brittleness and fracture toughness in rock cutting: The Journal of the South African Institute of Mining and Metallurgy, 106, 407–423.Google Scholar
  • Verma, S., A. Roy, R. Perez, and K. J. Marfurt, 2012, Mapping high frackability and high TOC zones in the Barnett Shale: Supervised probabilistic neural network vs. unsupervised multi-attribute Kohonen SOM: 82nd Annual International Meeting, SEG, Expanded Abstracts, doi: 10.1190/segam2012-1494.1.AbstractGoogle Scholar
  • Wang, F. P., and J. F. Gale, 2009, Screening criteria for shale-gas systems: Gulf Coast Association of Geological Societies Transactions, 59, 779–793.Google Scholar
  • Zhang, B., T. Zhao, X. Jin, and K. J. Marfurt, 2015, Brittleness evaluation of resource plays by integrating petrophysical and seismic data analysis: Interpretation, 3, no. 2, T81–T92, doi: 10.1190/INT-2014-0144.1.AbstractGoogle Scholar
  • Zhao, T., V. Jayaram, K. J. Marfurt, and H. Zhou, 2014, Lithofacies classification in Barnett shale using proximal support vector machines: 84th Annual International Meeting, SEG, Expanded Abstracts, 1491–1495.AbstractGoogle Scholar
  • Zhao, T., V. Jayaram, A. Roy, and K. J. Marfurt, 2015a, A comparison of classification techniques for seismic facies recognition: Interpretation, 3, no. 4, SAE29–SAE58, doi: 10.1190/INT-2015-0044.1.AbstractGoogle Scholar
  • Zhao, T., S. Verma, D. Devegowda, and V. Jayaram, 2015b, TOC estimation in the Barnett Shale from triple combo logs using support vector machine: 85th Annual International Meeting, SEG, Expanded Abstracts, 791–795.AbstractGoogle Scholar