This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Tectonic inversion of salt-detached ramp-syncline basins as illustrated by analog modeling and kinematic restoration

Authors:

Salt-detached ramp-syncline basins are developed in extensional settings and are characterized by wide synclinal sedimentary basins detached on salt and formed above the hanging wall of active ramp-flat-ramp extensional faults. They are rarely fault bounded; instead, they are bounded by salt structures that are in general parallel to the major subsalt structures. As such, the formation of these extensional systems requires the presence of (1) a subsalt extensional fault with significant dip changes and (2) an evaporitic unit above the extensional fault, which partially or completely decouples the basin from a subsalt extensional fault. Salt-detached ramp-syncline basins have a significant exploration potential when their extensional geometry is preserved and when they have undergone positive tectonic inversion and consequent uplift and fold amplification. However, in some cases, their subsalt geometry may not be fully recognizable, especially when subsalt seismic imaging is poor. To obtain a deeper understanding of the geometry and kinematic evolution of these salt-detached ramp-syncline basins, we performed a series of analog modeling experiments, in which the models’ cross sections had been sequentially restored. Analog models and restoration results reveal that the kinematic evolution of the salt-detached ramp-syncline basins during extension and inversion depends on the interaction of different factors that may function simultaneously. Our results are used to improve the interpretation of seismic sections in inverted Mesozoic salt-detached ramp-syncline basins on the Atlantic margins, where subsalt faults are not well-imaged, and thus the suprasalt geometries must be used to infer the subsalt structure.

References

  • Alves, T. M., R. L. Gawthorpe, D. W. Hunt, and J. H. Monteiro, 2002, Jurassic tectono-sedimentary evolution of the Northern Lusitanian Basin (offshore Portugal): Marine and Petroleum Geology, 19, 727–754, doi: 10.1016/S0264-8172(02)00036-3.
  • Balkwill, H. R., and F. D. Legall, 1989, Whale Basin, offshore Newfoundland: Extension and salt diapirism. Extensional tectonics and stratigraphy of the North Atlantic Margins: AAPG Memoir, 46, 233–246.
  • Benedicto, A., M. Séguret, and P. Labaume, 1999, Interaction between faulting, drainage and sedimentation in extensional hanging-wall syncline basins: Examples of Oligocene Matelles basin (Gulf of Lion rifted margin, SE France), in B. DuranL. JolivetF. HorváthM. Séranne, eds., The mediterranean basins: Tertiary extension within the Alpine Orogen: Geological Society of London, Special Publications, 81–108, doi: 10.1144/GSL.SP.1999.156.01.06.
  • Buchanan, P. G., and K. R. McClay, 1991, Sandbox experiments of inverted listric and planar fault Systems: Tectonophysics, 188, 97–115, doi: 10.1016/0040-1951(91)90317-L.TCTOAM0040-1951
  • Burberry, C. M., 2015, Spatial and temporal variation in penetrative strain during compression: Insights from analog models: Lithosphere, 7, 611–624, doi: 10.1130/L454.1.
  • Callot, J. P., J. F. Salel, J. Letouzey, J. M. Daniel, and J. C. Ringenbach, 2016, 3D evolution of salt controlled minibasins: Interactions, folding and megaflap development: AAPG Bulletin, 20, 160–518, doi: 10.1306/03101614087.
  • Carola, E., J. A. Muñoz, and E. Roca, 2015,The transition from thick-skinned to thin-skinned tectonics in the Basque-Cantabrian Pyrenees: The Burgalesa Platform and surroundings: International Journal of Earth Sciences, 104, 2215–2239, doi: 10.1007/s00531-015-1177-z.
  • Casas, J. M., J. D. Durney, J. Ferret, and J. A. Muñoz, 1996, Determinación de la deformación finita en la vertiente sur del Pirineo oriental a lo largo de la transversal del rio Ter: Geogaceta, 20, 803–805.GEOGEI
  • Coward, M., and S. Stewart, 1995, Salt-influenced structures in the Mesozoic-Tertiary cover of the Southern North Sea, UK, in M. P. A. JacksonD. G. RobertsS. Snelson, eds., Salt tectonics: A global perspective: AAPG, 229–250.
  • Coward, M. P., 1995, Structural and tectonic setting of the Permo-Triassic basins of northwest Europe: Geological Society of London, Special Publications, 7–39.
  • Dahlstrom, C. D. A., 1969, Balanced cross sections: Canadian Journal of Earth Sciences, 6, 743–757, doi: 10.1139/e69-069.CJESAP0008-4077
  • Dercourt, J., L. E. Ricou, and B. Vrielynck, 1993, Atlas tethys palaeoenvironmental maps: Gauthier-Villars.
  • Dooley, T. P., M. P. A. Jackson, C. A. L. Jackson, M. R. Hudec, and C. R. Rodriguez, 2015, Enigmatic structures within salt walls of the Santos Basin — Part 2: Mechanical explanation from physical modeling: Journal of Structural Geology, 75, 163–187, doi: 10.1016/j.jsg.2015.01.009.JSGEDY0191-8141
  • Dooley, T. P., K. R. McClay, M. Hempton, and D. Smit, 2005, Salt tectonics above complex basement extensional fault systems: Results from analogue modelling, in A. G. DoreB. A. Vining, eds., Petroleum geology: North-west Europe and global perspectives: Proceedings of the 6th Petroleum Geology Conference: Petroleum Geology Conferences Ltd. and the Geological Society, 1631–1648, doi: 10.1144/0061631.
  • Durcanin, M. A., 2009, Influence of synrift salt on rift-basin development: Application to the Orpheus Basin, offshore Canada: M.S. thesis, The State University of New Jersey.
  • Eisenstadt, G., and D. Sims, 2005, Evaluating sand and clay models: Do rheological differences matter?: Journal of Structural Geology, 27, 1399–1412, doi: 10.1016/j.jsg.2005.04.010.JSGEDY0191-8141
  • Ellis, P. G., and K. R. McClay, 1988, Listric extensional fault system-results of analogue model experiments: Basin Research, 1, 55–70, doi: 10.1111/j.1365-2117.1988.tb00005.x.
  • Ferrer, O., 2012, Salt tectonics in the Parentis Basin (Eastern Bay of Biscay): Origin and Kinematics of salt structures in a hyperextended margin affected by subsequent contractional deformation: M.S. thesis, Universitat de Barcelona.
  • Ferrer, O., M. P. A. Jackson, E. Roca, and M. Rubinat, 2012, Evolution of salt structures during extension and inversion of the Offshore Parentis Basin (Eastern Bay of Biscay), in G. I. AlsopS. G. ArcherA. J. HartleyN. T. GrantR. Hodgkinson, eds., Salt tectonics, sediments and prospectivity: Geological Society of London, Special Publications, 361–380, doi: 10.1144/SP363.16.
  • Ferrer, O., K. R. McClay, and N. C. Sellier, 2016, Influence of fault geometries and mechanical anisotropies on the growth and inversion of hangingwall synclinal basins: Insights from sandbox models and natural examples, in C. ChildR. E. HoldsworthC. A. L. JacksonT. ManzocchiJ. J. WalshG. Yieldings, eds., The geometry and growth of normal faults: Geological Society of London, Special Publications, 439, doi: 10.1144/SP439.8.
  • Ferrer, O., E. Roca, and B. C. Vendeville, 2008, Influence of a syntectonic viscous salt layer on the structural evolution of extensional kinked-fault systems: Bollettino di Geofisica Teorica ed Applicata, 49, 371–375.
  • Ferrer, O., E. Roca, and B. C. Vendeville, 2014, The role of salt layers in the hangingwall deformation of kinked-planar extensional faults: Insights from 3D analogue models and comparison with the Parentis Basin: Tectonophysics, 636, 338–350, doi: 10.1016/j.tecto.2014.09.013.TCTOAM0040-1951
  • Glennie, K. W., 1995, Permian and Triassic rifting in northwest Europe: Geological Society of London, Special Publications, 1–5.
  • Groshong, R. H., Jr., C. Bond, A. Gibbs, R. Ratliff, and D. V. Wiltschko, 2012, Preface: Structural balancing at the start of the 21st century: 100 years since Chamberlin: Journal of Structural Geology, 41, 1–5, doi: 10.1016/j.jsg.2012.03.010.JSGEDY0191-8141
  • Guimerà, J., Á. Alonso, and J. R. Mas, 1995, Inversion of an extensional-ramp basin by a newly formed thrust: The Cameros basin (N. Spain): Geological Society of London, Special Publications, 433–453.
  • Horsfield, W. T., 1977, An experimental approach to basement controlled faulting: Geologie en Mijnbouw, 56, 363–370.GEMIAA
  • Hubbert, M. K., 1937, Theory of scaled models as applied to the study of geological structures: Geological Society of America Bulletin, 48, 1459–1520, doi: 10.1130/GSAB-48-1459.BUGMAF0016-7606
  • Hudec, M. R., and M. P. A. Jackson, 2007, Terra infirma: Understanding salt tectonics: Earth Science Reviews, 82, 1–28, doi: 10.1016/j.earscirev.2007.01.001.
  • Hudec, M. R., M. P. A. Jackson, and D. D. Schultz-Ela, 2009, The paradox of minibasin subsidence into salt: Clues to the evolution of crustal basins: Geological Society of America Bulletin, 121, 201–221, doi: 10.1130/B26275.1.BUGMAF0016-7606
  • Huiqi, L., K. R. McClay, and D. Powell, 1992, Physical models of thrusts wedges, in K. R. McClay, ed., Thrust tectonics: Chapman and Hall, 71–81.
  • Jackson, M. P. A., C. Cramez, and J. M. Fonck, 2000, Role of subaerial volcanic rocks and mantle plumes in creation of South Atlantic margins: Implications for salt tectonics and source rocks: Marine and Petroleum Geology, 17, 477–498, doi: 10.1016/S0264-8172(00)00006-4.MPEGD80264-8172
  • Jackson, M. P. A., and M. R. Hudec, 2017, Salt tectonics: Principles and practice: Cambridge University Press.
  • Jackson, M. P. A., D. D. Schultz-Ela, M. R. Hudec, I. A. Watson, and M. L. Porter, 1998, Structure and evolution of Upheaval Dome: A pinched-off salt diapir: Geological Society of America Bulletin, 110, 1547–1573, doi: 10.1130/0016-7606(1998)110<1547:SAEOUD>2.3.CO;2.BUGMAF0016-7606
  • Jackson, M. P. A., and C. J. Talbot, 1991, A glossary of salt tectonics: Bureau of Economic Geology.
  • Jackson, M. P. A., and B. C. Vendeville, 1994, Regional extension as a geologic trigger for diapirism: Geological Society of America Bulletin, 106, 57–73, doi: 10.1130/0016-7606(1994)106<0057:REAAGT>2.3.CO;2.BUGMAF0016-7606
  • Kehle, R. O., 1988, The origin of salt structures, in B. C. Schreiber, ed., Evaporites and hydrocarbons: Columbia University Press, 345–403.
  • Konstantinovskaya, E., and J. Malavieille, 2011, Thrust wedges with décollement levels and syntectonic erosion: A view from analog models: Tectonophysics, 502, 336–350, doi: 10.1016/j.tecto.2011.01.020.TCTOAM0040-1951
  • Koyi, H., M. K. Jenyon, and K. Petersen, 1993, The effect of basement faulting on diapirism: Journal of Petroleum Geology, 16, 285–312, doi: 10.1111/j.1747-5457.1993.tb00339.x.JPEGD90141-6421
  • Koyi, H., and K. Petersen, 1993, Influence of basement faults on the development of salt structures in the Danish Basin: Marine and Petroleum Geology, 10, 82–94, doi: 10.1016/0264-8172(93)90015-K.MPEGD80264-8172
  • Koyi, H. A., 2000, Towards dynamic restoration of geologic profiles: Some lessons from analogue modeling, in W. MohriakM. Taiwani, eds., Atlantic rifts and continental margins: American Geophysical Union, Geophysical Monograph Series 115, 317–329, doi: 10.1029/GM115p0317.
  • Koyi, H. A., and M. Sans, 2006, Deformation transfer in viscous detachments: Comparison of sandbox models to the South Pyrenean Triangle Zone: Geological Society of London, Special Publications, 117–134, doi: 10.1144/GSL.SP.2006.253.01.06.
  • Lingrey, S., and O. Vidal-Royo, 2015, Evaluating the quality of bed length and area balance in 2D structural restorations: Interpretation, 3, no. 4, SAA133–SAA160, doi: 10.1190/INT-2015-0126.1.
  • Mathieu, C., 1986, Histoire géologique du sous-bassin de Parentis: Bulletin des Centres Recherche Exploration-Production Elf-Aquitaine, 10, 22–47.
  • McClay, K. R., 1989, Analogue models of inversion tectonics: Geological Society of London, Special Publications, 41–59, doi: 10.1144/GSL.SP.1989.044.01.04.
  • McClay, K. R., 1990, Extensional fault systems in sedimentary basins: A review of analogue model studies: Marine and Petroleum Geology, 7, 206–233, doi: 10.1016/0264-8172(90)90001-W.MPEGD80264-8172
  • Muñoz, J. A., 1992, Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section, in K. R. McClay, ed., Thrust tectonics: Chapman and Hall, 235–246.
  • Nalpas, T., and J. P. Brun, 1993, Salt flow and diapirism related to extension at crustal scale: Tectonophysics, 228, 349–362, doi: 10.1016/0040-1951(93)90348-N.TCTOAM0040-1951
  • Nalpas, T., S. Le Douran, J. P. Brun, P. Untrnehr, and J. P. Richert, 1995, Inversion of the broad fourteens basin (offshore Netherlands): A small-scale model investigation: Sedimentary Geology, 95, 237–250, doi: 10.1016/0037-0738(94)00113-9.SEGEBX0037-0738
  • Ori, G. G., and P. F. Friend, 1984, Sedimentary basins formed and carried piggyback on active thrust sheets: Geology, 12, 475–478, doi: 10.1130/0091-7613(1984)12<475:SBFACP>2.0.CO;2.GLGYBA0091-7613
  • Rasmussen, E. S., S. Lomholt, C. Andersen, and O. V. Vejbæk, 1998, Aspects of the structural evolution of the Lusitanian Basin in Portugal and the shelf and slope area offshore Portugal: Tectonophysics, 300, 199–225, doi: 10.1016/S0040-1951(98)00241-8.TCTOAM0040-1951
  • Richardson, N. J., J. R. Underhill, and G. Lewis, 2005, The role of evaporite mobility in modifying subsidence patterns during normal fault growth and linkage, Halten Terrace, Mid-Norway: Basin Research, 17, 203–223, doi: 10.1111/j.1365-2117.2005.00250.x.
  • Roure, F., J. O. Brun, B. Colletta, and J. Van Den Driessche, 1992, Geometry and kinematics of extensional structures in the Alpine foreland basin of southeastern France: Journal of Structural Geology, 14, 503–519, doi: 10.1016/0191-8141(92)90153-N.JSGEDY0191-8141
  • Rowan, M. G., 2014, Passive-margin salt basins: Hyperextension, evaporite deposition, and salt tectonics: Basin Research, 26, 154–182, doi: 10.1111/bre.12043.
  • Rowan, M. G., M. P. A. Jackson, and B. D. Trudgill, 1999, Salt-related fault families and fault welds in the northern Gulf of Mexico: AAPG Bulletin, 83, 1454–1484.
  • Rowan, M. G., and B. C. Vendeville, 2006, Foldbelts with early salt withdrawal and diapirism: Physical model and examples from the northern Gulf of Mexico and the Flinders Ranges, Australia: Marine and Petroleum Geology, 23, 871–891, doi: 10.1016/j.marpetgeo.2006.08.003.MPEGD80264-8172
  • Schellart, W. P., 2000, Shear test results for cohesion and friction coefficients for different granular materials: Scaling implications for their usage in analogue modeling: Tectonophysics, 324, 1–16, doi: 10.1016/S0040-1951(00)00111-6.TCTOAM0040-1951
  • Stapel, G., S. Cloetingh, and B. Pronk, 1996, Quantitative subsidence analysis of the Mesozoic evolution of the Lusitanian basin (western Iberian margin): Tectonophysics, 266, 493–507, doi: 10.1016/S0040-1951(96)00203-X.TCTOAM0040-1951
  • Stewart, S. A., and J. A. Clark, 1999, Impact of salt on the structure of the Central North Sea hydrocarbon fairways: Geological Society of London,Petroleum Geology Conference Series, 179–200.
  • Soto, R., M. Casas-Sainz, and P. Del Río, 2007, Geometry of half-grabens containing a mid-level viscous décollement: Basin Research, 19, 437–450, doi: 10.1111/j.1365-2117.2007.00328.x.
  • Tankard, A. J., H. J. Welsink, and W. A. M. Jenkins, 1989, Structural styles and stratigraphy of the Jeanne d’Arc Basin, Grand Banks of Newfoundland. Extensional tectonics and stratigraphy of the North Atlantic margins: AAPG Memoir, 46, 265–282.
  • Tavani, S., E. Carola, P. Granado, A. Quintà, and J. A. Muñoz, 2013, Transpressive inversion of a Mesozoic extensional forced fold system with an intermediate décollement level in the Basque‐Cantabrian Basin (Spain): Tectonics, 32, 146–158, doi: 10.1002/tect.v32.2.TCTNDM0278-7407
  • Tavani, S., and P. Granado, 2014, Along-strike evolution of folding, stretching and breaching of supra-salt strata in the Plataforma Burgalesa extensional forced fold system (northern Spain): Basin Research, 27, 573–585, doi: 10.1111/bre.12089.
  • Tugend, J., G. Manatschal, N. J. Kusznir, E. Masini, G. Mohn, and I. Thinon, 2014, Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay-Pyrenees: Tectonics, 33, 1239–1276, doi: 10.1002/2014TC003529.TCTNDM0278-7407
  • Vendeville, B., 1987, Champs de failles et tectonique en extension: Modélisation expérimentale: M.S. thesis, Université de Rennes.
  • Vendeville, B., 1988, Modèles expérimentaux de fracturation de lat couverture controlée par des failles normales dans le socle: Comptes Rendus Académie des Sciences Paris, 307, 1013–1019.
  • Vendeville, B. C., H. Ge, and M. P. A. Jackson, 1995, Scale models of salt tectonics during basement-involved extension: Petroleum Geoscience, 1, 179–183, doi: 10.1144/petgeo.1.2.179.
  • Weijermars, R., 1986, Flow behavior and physical chemistry of bouncing putties and related polymers in view of tectonic laboratory applications: Tectonophysics, 124, 325–358, doi: 10.1016/0040-1951(86)90208-8..TCTOAM0040-1951
  • Withjack, M. O., and S. Callaway, 2000, Active normal faulting beneath a salt layer: An experimental study of deformation patterns in the cover sequence: AAPG Bulletin, 84, 627–651.
  • Withjack, M. O., and R. W. Schlische, 2005, A review of tectonic events on the passive margin of eastern North America, in P. Post, ed., Petroleum systems of divergent continental margin basins: 25th Bob S. Perkins Research Conference, Gulf Coast Section of SEPM, 203–235.
  • Yamada, Y., and K. R. McClay, 2003, Application of geometric models to inverted listric fault systems in sandbox experiments. Paper 1: 2D hanging wall deformation and section restoration: Journal of Structural Geology, 25, 1551–1560, doi: 10.1016/S0191-8141(02)00181-5.JSGEDY0191-8141
  • Ziegler, P. A., 1988, Evolution of the Arctic-North Atlantic and the Western Tethys: A visual presentation of a series of paleogeographic-paleotectonic maps: AAPG Memoir, 43, 164–196.