This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Chemostratigraphic insights into fluvio-lacustrine deposition, Yanchang Formation, Upper Triassic, Ordos Basin, China

Authors:

A chemostratigraphic study of a 300 m long core recovered from the southeastern central Ordos depocenter reveals thick (<1065  m) intervals of fine-grained, organic-rich lacustrine strata, interpreted to represent deepwater deposition under meromictic conditions (incomplete watermass overturn) during lake highstand phases, interspersed with thick (10–30 m) intervals of arkosic sandstones, reflective of fluvio-deltaic deposition during lake lowstand phases. Along with elevated concentrations of %Al, traditionally a proxy for clay content, maximum total-organic-carbon (TOC) values in the deepwater lacustrine facies reach 8%, with average values of approximately 3%. The fine-grained, organic-rich facies is also characterized by elevated S (up to 6%) and As concentrations, both proxies for pyrite, an indicator of more stagnant, reducing conditions in the hypolimnion (the volume of the lake below the surface mixing zone) during lake highstand phases. Enrichment factors for redox-sensitive trace elements (RSTEs) are not significantly elevated throughout the TOC-rich intervals, but they are punctuated in thinner intervals. Punctuated enrichments in RSTEs reflect episodes of enhanced suboxia/anoxia in the hypolimnion during lake highstand phases resulting from sustained meromixis (protracted episodes of incomplete watermass turnover). Although dramatic shifts between fluvio-deltaic and deepwater lacustrine deposition are recorded in the Yanchang strata, no evidence indicates that the lacustrine system ever built up a significant salt concentration, suggesting that an outlet was maintained throughout much of the depositional history. A chemofacies framework for the Yanchang Formation is developed based on hierarchical cluster analysis and ranking of major element chemostratigraphic results. The outcome of chemofacies analysis is similar to the lithofacies analysis, subdividing the stratigraphic record of calcite-cemented sandstone/siltstone lithologies (fluvio-deltaic facies) and silty to finer grained mudstone lithologies (deep-water lacustrine facies) based on changes in elemental concentrations that equate to shifts in the relative abundance of mineral contents (e.g., clays, quartz, feldspars, pyrite, and carbonates).

References

  • Aggett, J., and G. O’Brien, 1985, Detailed model for the mobility of arsenic in lacustrine sediments based on measurements in Lake Ohakuri: Environmental Science and Technology, 19, 231–238, doi: 10.1021/es00133a002.ESTHAG0013-936XCrossrefWeb of ScienceGoogle Scholar
  • Algeo, T. J., and J. B. Maynard, 2004, Trace element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems: Chemical Geology, 206, 289–318, doi: 10.1016/j.chemgeo.2003.12.009.CHGEAD0009-2541CrossrefWeb of ScienceGoogle Scholar
  • Balistrieri, L. S., J. W. Murray, and B. Paul, 1992, The biogeochemical cycling of trace metals in the water column of Lake Sammamish, Washington: Response to seasonally anoxic conditions: Limnology and Oceanography, 37, 529–548, doi: 10.4319/lo.1992.37.3.0529.LIOCAH0024-3590CrossrefWeb of ScienceGoogle Scholar
  • Balistrieri, L. S., J. W. Murray, and B. Paul, 1994, The geochemical cycling of trace elements in a biogenic meromictic lake: Geochimica et Cosmochimica Acta, 58, 3993–4008, doi: 10.1016/0016-7037(94)90262-3.GCACAK0016-7037CrossrefWeb of ScienceGoogle Scholar
  • Bao, C., Y. Chen, D. Li, and S. Wang, 2014, Provenances of the Mesozoic sediments in the Ordos Basin and implications for collision between the North China Craton (NCC) and the South China Craton (SCC): Journal of Asian Earth Sciences, 96, 296–307, doi: 10.1016/j.jseaes.2014.09.006.CrossrefWeb of ScienceGoogle Scholar
  • Baumgardner, R. W., H. S. Hamlin Jr., and H. D. Rowe, 2016, Lithofacies of the Wolfcamp and Lower Leonard Intervals, Southern Midland Basin, Texas: Texas Bureau of Economic Geology Research Investigation.CrossrefGoogle Scholar
  • Belzile, N., and A. Tessier, 1990, Interactions between arsenic and iron oxyhydroxides in lacustrine sediments: Geochimica et Cosmochimica Acta, 54, 103–109, doi: 10.1016/0016-7037(90)90198-T.GCACAK0016-7037CrossrefWeb of ScienceGoogle Scholar
  • Benavente, C., A. Mancuso, N. Cabaleri, and E. Gierlowski-Kordesh, 2015, Comparison of lacustrine successions and their palaeohydrological implications in two sub-basins of the Triassic Cuyana rift, Argentina: Sedimentology, 62, 1771–1813, doi: 10.1111/sed.12209.SEDIAT0037-0746CrossrefWeb of ScienceGoogle Scholar
  • Bostick, B. C., and S. Fendorf, 2003, Arsenite sorption on troilite (FeS) and pyrite (FeS2): Geochimica et Cosmochimica Acta, 67, 909–921, doi: 10.1016/S0016-7037(02)01170-5.GCACAK0016-7037CrossrefWeb of ScienceGoogle Scholar
  • Clemmensen, L. B., D. V. Kent, and F. A. Jenkins, 1998, A Late Triassic lake system in East Greenland: Facies, depositional cycles and palaeoclimate: Palaeogeography, Palaeoclimatology, Palaeoecology, 140, 135–159, doi: 10.1016/S0031-0182(98)00043-1.CrossrefWeb of ScienceGoogle Scholar
  • Craigie, N. W., 2015, Applications of chemostratigraphy in Middle Jurassic unconventional reservoirs in eastern Saudi Arabia: GeoArabia, 20, 79–110.Google Scholar
  • Davison, W., G. W. Grime, and C. Woof, 1992, Characterization of lacustrine iron sulfide particles with proton-induced X-ray emission: Limnology and Oceanography, 37, 1770–1777, doi: 10.4319/lo.1992.37.8.1770.LIOCAH0024-3590CrossrefWeb of ScienceGoogle Scholar
  • Fairbanks, M., S. C. Ruppel, and H. D. Rowe, 2016, High resolution stratigraphy and facies architecture of the Upper Cretaceous (Cenomanian-Turonian) Eagle Ford Group, Central Texas: AAPG Bulletin, 100, 379–403, doi: 10.1306/12071514187.AABUD20149-1423CrossrefWeb of ScienceGoogle Scholar
  • Faure, G., 1998, Principles and applications of geochemistry: A comprehensive textbook for geology students: Prentice Hall.Google Scholar
  • Fraley, C., and A. E. Raftery, 1998, How many clusters? Which clustering method? Answers via model-based cluster analysis: The Computer Journal, 41, 578–588, doi: 10.1093/comjnl/41.8.578.CrossrefWeb of ScienceGoogle Scholar
  • Fraley, C., and A. E. Raftery, 2002, Model-based clustering, discriminant analysis and density estimation: Journal of the American Statistical Association, 97, 611–631, doi: 10.1198/016214502760047131.CrossrefWeb of ScienceGoogle Scholar
  • Gao, R., X. Wang, and F. Jing, 2015, Fracability evaluation of lacustrine shale in the Yanchang Formation of southeastern Ordos Basin: Energy Exploration and Exploitation, 33, 363–374, doi: 10.1260/0144-5987.33.3.363.EEEXDU0144-5987CrossrefWeb of ScienceGoogle Scholar
  • Hamilton-Taylor, J., W. Davison, and K. Morfett, 1996, The biogeochemical cycling of Zn, Cu, Fe, Mn, and dissolved organic C in a seasonally anoxic lake: Limnology and Oceanography, 41, 408–418, doi: 10.4319/lo.1996.41.3.0408.LIOCAH0024-3590CrossrefWeb of ScienceGoogle Scholar
  • Harris, N. B., C. A. Mnich, D. Selby, and D. Korn, 2013, Minor and trace element and Re-Os chemistry of the Devonian Woodford Shale, Permian Basin, West Texas: Insights into metal abundance and basin processes: Chemical Geology, 356, 76–93, doi: 10.1016/j.chemgeo.2013.07.018.CHGEAD0009-2541CrossrefWeb of ScienceGoogle Scholar
  • Huerta-Diaz, M. A., and J. W. Morse, 1992, Pyritization of trace metals in anoxic marine sediments: Geochimica et Cosmochimica Acta, 56, 2681–2702, doi: 10.1016/0016-7037(92)90353-K.GCACAK0016-7037CrossrefWeb of ScienceGoogle Scholar
  • Ji, L.-M., K. Yan, F.-W. Meng, and M. Zhao, 2010, The oleaginous Botryococcus from the Triassic Yanchang Formation in Ordos Basin, Northwestern China: Morphology and its paleoenvironmental significance: Journal of Asian Earth Sciences, 38, 175–185, doi: 10.1016/j.jseaes.2009.12.010.CrossrefWeb of ScienceGoogle Scholar
  • Johnson, C. A., L. Sigg, and U. Lindauer, 1992, The chromium cycle in a seasonally anoxic lake: Limnology and Oceanography, 37, 315–321, doi: 10.4319/lo.1992.37.2.0315.LIOCAH0024-3590CrossrefWeb of ScienceGoogle Scholar
  • Kuhn, A., and L. Sigg, 1993, Arsenic cycling in eutrophic Lake Greifen, Switzerland: Influence of seasonal redox processes: Limnology and Oceanography, 38, 1052–1059, doi: 10.4319/lo.1993.38.5.1052.LIOCAH0024-3590CrossrefWeb of ScienceGoogle Scholar
  • Lazar, O. R., K. M. Bohacs, J. H. S. Macquaker, J. Schieber, and T. M. Demko, 2015, Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines: Journal of Sedimentary Research, 85, 230–246, doi: 10.2110/jsr.2015.11.JSERFV1527-1404CrossrefWeb of ScienceGoogle Scholar
  • Liu, S., 1998, The coupling mechanism of basin and orogen in the western Ordos Basin and adjacent regions of China: Journal of Asian Earth Sciences, 16, 369–383, doi: 10.1016/S0743-9547(98)00020-8.CrossrefWeb of ScienceGoogle Scholar
  • Liu, Z., F. Shen, X. Zhu, F. Li, and M. Tan, 2015, Formation conditions and sedimentary characteristics of a Triassic shallow water braided delta in the Yanchang Formation, Southwest Ordos Basin, China: PLoS ONE, 10, e0119704, doi: 10.1371/journal.pone.0119704.POLNCL1932-6203CrossrefWeb of ScienceGoogle Scholar
  • Liu, S., S. Su, and G. Zhang, 2013, Early Mesozoic basin development in North China: Indications of cratonic deformation: Journal of Asian Earth Sciences, 62, 221–236, doi: 10.1016/j.jseaes.2012.09.011.CrossrefWeb of ScienceGoogle Scholar
  • Loucks, R. G., S. C. Ruppel, X. Wang, L. Ko, S. Peng, T. Zhang, H. D. Rowe, and P. Smith, 2017, Pore types, pore-network analysis, and pore quantification of the lacustrine shale-hydrocarbon system in the Late Triassic Yanchang Formation in the southeastern Ordos Basin, China: Interpretation, 5, this issue, doi: 10.1190/int-2016-0094.1.AbstractGoogle Scholar
  • Magyar, B., H. C. Moor, and L. Sigg, 1993, Vertical distribution and transport of molybdenum in a lake with a seasonally anoxic hypolimnion: Limnology and Oceanography, 38, 521–531, doi: 10.4319/lo.1993.38.3.0521.LIOCAH0024-3590CrossrefWeb of ScienceGoogle Scholar
  • Meyers, P. A., 1997, Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes: Organic Geochemistry, 27, 213–250, doi: 10.1016/S0146-6380(97)00049-1.ORGEDE0146-6380CrossrefWeb of ScienceGoogle Scholar
  • Meyers, P. A., 2003, Applications of organic geochemistry to paleolimnological reconstructions: A summary of examples from the Laurentian Great Lakes: Organic Geochemistry, 34, 261–289, doi: 10.1016/S0146-6380(02)00168-7.ORGEDE0146-6380CrossrefWeb of ScienceGoogle Scholar
  • Meyers, P. A., and S. Horie, 1993, An organic carbon isotopic record of glacial-postglacial change in atmospheric pCO2 in the sediments of Lake Biwa, Japan: Palaeogeography, Palaeoclimate, Palaeoecology, 105, 171–178, doi: 10.1016/0031-0182(93)90082-T.CrossrefGoogle Scholar
  • Meyers, P. A., and E. Lallier-Vergès, 1999, Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates: Journal Paleolimnology, 21, 345–372, doi: 10.1023/A:1008073732192.CrossrefWeb of ScienceGoogle Scholar
  • Milliken, K. L., Y. Shen, L. Ko, and Q. Liang, 2017, Grain composition and diagenesis of organic-rich lacustrine tarls, Triassic Yanchang Formation, Ordos Basin, China: Interpretation, 5, this issue, doi: 10.1190/int-2016-0092.1.AbstractGoogle Scholar
  • Moore, J. N., W. H. Ficklin, and C. Johns, 1988, Partitioning of arsenic and metals in reducing sulfidic sediments: Environmental Science and Technology, 22, 432–437, doi: 10.1021/es00169a011.ESTHAG0013-936XCrossrefWeb of ScienceGoogle Scholar
  • Nance, H. S., and H. D. Rowe, 2015, Eustatic controls on stratigraphy, chemostratigraphy, and water mass evolution preserved in a Lower Permian mudrock succession, Delaware Basin, west Texas, USA: Interpretation, 3, no. 1, SH11–SH25, doi: 10.1190/INT-2014-0207.1.AbstractGoogle Scholar
  • Nockolds, S. R., 1954, Average chemical compositions of some igneous rocks: Geological Society of America Bulletin, 65, 1007–1032, doi: 10.1130/0016-7606(1954)65[1007:ACCOSI]2.0.CO;2.BUGMAF0016-7606CrossrefWeb of ScienceGoogle Scholar
  • Olsen, P. E., 1990, Tectonic, climatic, and biotic modulation of lacustrine ecosystems — Examples from Newark Supergroup of eastern North America, in B. Katz, ed., Lacustrine basin exploration: Case studies and modem analogs: AAPG Memoir, 209–224.Google Scholar
  • Pearce, T. J., B. M. Besly, D. S. Wray, and D. K. Wright, 1999, Chemostratigraphy: A method to improve interwell correlation in barren sequences: A case study using onshore Duckmantian/Stephanian sequences (West Midlands, U.K.): Sedimentary Geology, 124, 197–220, doi: 10.1016/S0037-0738(98)00128-6.SEGEBX0037-0738CrossrefWeb of ScienceGoogle Scholar
  • Pearce, T. J., and I. Jarvis, 1992, Applications of geochemical data to modelling sediment dispersal patterns in distal turbidites: Late Quaternary of the Madeira Abyssal Plain: Journal of Sedimentary Petrology, 62, 1112–1129.JSEPAK0022-4472Google Scholar
  • Phillips, N. D., 1991, Refined subsidence analyses as a means to constrain Late Cenozoic fault movement, Ventura Basin, California: M.A. thesis, University of Texas at Austin.Google Scholar
  • Ratcliffe, K. T., J. Martin, T. J. Pearce, A. D. Hughes, D. E. Lawton, D. S. Wray, and F. Bessa, 2006, A regional chemostratigraphically: Defined correlation framework for the late Triassic TAG-I formation in blocks 402 and 405a, Algeria: Petroleum Geoscience, 12, 3–12, doi: 10.1144/1354-079305-669.CrossrefWeb of ScienceGoogle Scholar
  • Rowe, H. D., R. B. Dunbar, D. Mucciarone, G. O. Seltzer, P. A. Baker, and S. Fritz, 2002, Insolation, moisture balance and climate change on the South American Altiplano since the last glacial maximum: Climatic Change, 52, 175–199, doi: 10.1023/A:1013090912424.CLCHDX0165-0009CrossrefWeb of ScienceGoogle Scholar
  • Rowe, H. D., N. Hughes, and K. Robinson, 2012, The quantification and application of handheld energy-dispersive X-ray fluorescence (ED-XRF) in mudrock chemostratigraphy and geochemistry: Chemical Geology, 324–325, 122–131, doi: 10.1016/j.chemgeo.2011.12.023.CHGEAD0009-2541CrossrefWeb of ScienceGoogle Scholar
  • Ruppel, S. C., H. D. Rowe, K. L. Milliken, and Y. Wan, 2017, Facies, rock attributes, stratigraphy and depositional environments: Yanchang Formation, Central Ordos Basin, China: Interpretation, 5, this issue, doi: 10.1190/int-2016-0122.1.AbstractGoogle Scholar
  • Sageman, B. B., and T. W. Lyons, 2004, Geochemistry of fine-grained sediments and sedimentary rocks, in F. Mackenzie, ed., Sediments, diagenesis, and sedimentary rock: Elsevier, 115–158.Google Scholar
  • Sano, J. L., K. T. Ratcliffe, and D. R. Spain, 2013, Chemostratigraphy of the Haynesville Shale, in U. HammesJ. Gale, eds., Geology of the Haynesville gas shale in East Texas and West Louisiana, U.S.A.: AAPG Memoir 105, 137–154.CrossrefGoogle Scholar
  • Soma, M., A. Tanaka, H. Seyama, and K. Satake, 1994, Characterization of arsenic in lake sediments by X-ray photoelectron spectroscopy: Geochimica et Cosmochimica Acta, 58, 2743–2745, doi: 10.1016/0016-7037(94)90141-4.GCACAK0016-7037CrossrefWeb of ScienceGoogle Scholar
  • Talbot, M. R., and T. Johannessen, 1992, A high resolution palaeo-climatic record for the last 27, 500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter: Earth and Planetary Science Letters, 110, 23–37, doi: 10.1016/0012-821X(92)90036-U.EPSLA20012-821XCrossrefWeb of ScienceGoogle Scholar
  • Tang, X., J. Zhang, X. Wang, B. Yu, W. Ding, J. Xiong, Y. Yang, L. Wang, and C. Yang, 2014, Shale characteristics in the southeastern Ordos Basin, China: Implications for hydrocarbon accumulation conditions and the potential of continental shales: International Journal of Coal Geology, 128–129, 32–46, doi: 10.1016/j.coal.2014.03.005.IJCGDE0166-5162CrossrefWeb of ScienceGoogle Scholar
  • Taylor, K. G., and K. O. Konhauser, 2011, Iron in earth surface systems: A major player in chemical and biological processes: Elements, 7, 83–88, doi: 10.2113/gselements.7.2.83.ELMEETCrossrefWeb of ScienceGoogle Scholar
  • Templ, M., P. Filzmoser, and C. Reimann, 2008, Cluster analysis applied to regional geochemical data: Problems and possibilities: Applied Geochemistry, 23, 2198–2213, doi: 10.1016/j.apgeochem.2008.03.004.APPGEY0883-2927CrossrefWeb of ScienceGoogle Scholar
  • Wang, X., L. Zhang, and C. Gao, 2015, The heterogeneity of Lacustrine Shale gas reservoir in Yanchang Formation, Xiasiwan Area, Ordos Basin: Acta Geologica Sinica (English Edition), 89, 99–101, doi: 10.1111/1755-6724.12302_42.CrossrefGoogle Scholar
  • Ward, J. H., 1963, Hierarchical grouping to optimize an objective function: Journal of the American Statistical Association, 58, 236–244, doi: 10.1080/01621459.1963.10500845.CrossrefWeb of ScienceGoogle Scholar
  • Wedepohl, K. H., 1971, Environmental influences on the chemical composition of shales and clays: Physics and Chemistry of the Earth, 8, 307–331.CrossrefGoogle Scholar
  • Wedepohl, K. H., 1991, The composition of the upper earth’s crust and the natural cycles of selected elements. Metals in natural raw materials. Natural resources, in E. Merian, ed., Metals and their Compounds in the Natural Environment: VCH, 3–17.Google Scholar
  • Wright, A. M., K. T. Ratcliffe, and B. A. Zaitlin, 2010, The application of chemostratigraphic techniques to distinguish compound incised valleys in low-accommodation incised-valley systems in a foreland basin setting: An example from the Lower Cretaceous Mannville Group and basal Colorado Sandstone (Colorado Group), Western Canadian Sedimentary Basin, in K. T. RatcliffeB. A. Zaitlin, eds., Application of modern stratigraphic techniques: Theory and case histories: SEPM, 93–107.Google Scholar
  • Xie, X., 2016, Provenance and sediment dispersal of the Triassic Yanchang Formation, southwest Ordos Basin, China, and its implications: Sedimentary Geology, 335, 1–16, doi: 10.1016/j.sedgeo.2015.12.016.SEGEBX0037-0738CrossrefWeb of ScienceGoogle Scholar
  • Yao, Z., Y. Yang, H. Ying, and Y. Dong, 2014, Mineral characteristics and their geological significance of black shales in southeastern Ordos Basin by X-ray diffraction analysis: China Journal of Geochemistry, 33, 119–124, doi: 10.1007/s11631-014-0666-2.CrossrefGoogle Scholar
  • Zhang, T., X. Wang, J. Zhang, X. Sun, K. L. Milliken, S. C. Ruppel, and D. Enriquez, 2017, Geochemical evidence for oil and gas expulsion in Triassic lacustrine organic-rich mudstone, Ordos Basin, China: Interpretation, 5, this issue, doi: 10.1190/int-2016-0104.1.AbstractGoogle Scholar
  • Zhao, J., N. P. Mountney, C. Liu, H. Qu, and J. Lin, 2015, Outcrop architecture of a fluvio-lacustrine succession: Upper Triassic Yanchang Formation, Ordos Basin, China: Marine and Petroleum Geology, 68, 394–413, doi: 10.1016/j.marpetgeo.2015.09.001.MPEGD80264-8172CrossrefWeb of ScienceGoogle Scholar
  • Zhao, W., H. Wang, X. Yuan, Z. Wang, and G. Zhu, 2010, Petroleum systems of Chinese nonmarine basins: Basin Research, 22, 4–16, doi: 10.1111/j.1365-2117.2009.00451.x.CrossrefWeb of ScienceGoogle Scholar
  • Zou, C., X. Zhang, P. Luo, L. Wang, Z. Luo, and L. Liu, 2010, Shallow-lacustrine sand-rich deltaic depositional cycles and sequence stratigraphy of the Upper Triassic Yanchang Formation, Ordos Basin, China: Basin Research, 22, 108–125, doi: 10.1111/j.1365-2117.2009.00450.x.CrossrefWeb of ScienceGoogle Scholar
  • Zou, C., X. Zhang, P. Luo, L. Wang, Z. Luo, and L. Liu, 2012, Deep-lacustrine transformation of sandy debrites into turbidites, Upper Triassic, Central China: Sedimentary Geology, 265–266, 143–155, doi: 10.1016/j.sedgeo.2012.04.004.SEGEBX0037-0738CrossrefWeb of ScienceGoogle Scholar