This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Time-lapse seismic signal analysis for enhanced oil recovery at Cranfield CO2 sequestration site, Cranfield field, Mississippi

Authors:

The Cranfield field in southwest Mississippi has been under continuous CO2 injection by Denbury Onshore LLC since 2008. Two 3D seismic surveys were collected in 2007 and 2010. An initial 4D seismic response was characterized after three years of injection, where more than three million tons of CO2 remain in the subsurface. This interpretation showed coherent seismic amplitude anomalies in some areas that received large amounts of CO2 but not in others. To understand these effects better, we performed Gassmann substitution modeling at two wells: the 31F-2 observation well and the 28-1 injection well. We aimed to predict a postinjection saturation curve and acoustic impedance (AI) change through the reservoir. Seismic volumes were cross-equalized, well ties to seismic were performed, and AI inversions were subsequently carried out. Inversion results showed that the change in AI is higher than Gassmann substitution predicted for the 28-1 injection well. The time-lapse AI difference predicted by the inversion is similar in magnitude to the difference inferred from a time delay along a marker horizon below the reservoir.

References

  • Ajo-Franklin, J.B., J. Peterson, J. Doetsch, and T. M. Daley, 2013, High-resolution characterization of a CO2 plume using Crosswell seismic tomography: Cranfield, MS, USA: International Journal of Greenhouse Gas Control, doi: 10.1016/j.ijggc.2012.12.018.1750-5836CrossrefWeb of ScienceGoogle Scholar
  • Arts, R., O. Eiken, A. Chadwick, P. Zweigel, L. van der Meer, and B. Zinszner, 2004, Monitoring of CO2 injected at Sleipner using time-lapse seismic data: Energy, 29, 1383–1392, doi: 10.1016/j.energy.2004.03.072.ENGYD40149-9386CrossrefWeb of ScienceGoogle Scholar
  • Batzle, M., and Z. Wang, 1992, Seismic properties of pore fluids: Geophysics, 57, 1396–1408, doi: 10.1190/1.1443207.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Bickle, M., A. Chadwick, H. E. Huppert, M. Hallworth, and L. Sarah, 2007, Modelling carbon dioxide accumulation at Sleipner: Implications for underground carbon storage: Earth and Planetary Science Letters, 255, 164–176, doi: 10.1016/j.epsl.2006.12.013.EPSLA20012-821XCrossrefWeb of ScienceGoogle Scholar
  • Biot, M. A., 1956, Theory of propagation of elastic waves in a fluid‐saturated porous solid. I. Low‐frequency range: Journal of the Acoustical Society of America, 28, 168–178, doi: 10.1121/1.1908239.JASMAN0001-4966CrossrefWeb of ScienceGoogle Scholar
  • Daley, T. M., L. R. Myer, J. E. Peterson, E. L. Majer, and G. M. Hoversten, 2008, Time-lapse crosswell seismic and VSP monitoring of injected CO2 in a brine aquifer: Environmental Geology, 54, 1657–1665, doi: 10.1007/s00254-007-0943-z.CrossrefWeb of ScienceGoogle Scholar
  • Dvorkin, J., D. Moos, J. Packwood, and A. Nur, 1999, Identifying patchy saturation from well logs: Geophysics, 64, 1756–1759, doi: 10.1190/1.1444681.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Gardner, G. H. F., L. W. Gardner, and A. R. Gregory, 1974, Formation velocity and density-the diagnostic basics for stratigraphic traps: Geophysics, 39, 770–780, doi: 10.1190/1.1440465.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Gassmann, F., 1951, Elastic waves through a packing of spheres: Geophysics, 16, 673–685, doi: 10.1190/1.1437718.GPYSA70016-8033AbstractGoogle Scholar
  • Hovorka, S. D., T. A. Meckel, R. H. Trevino, J. Lu, J.-P. Nicot, J.-W. Choi, D. Freeman, P. Cook, T. M. Daley, J. B. Ajo-Franklin, B. M. Freifeild, C. Doughty, C. R. Carrigan, D. Brecque, Y. K. Kharaka, J. J. Thordsen, T. J. Phelps, C. Yang, K. D. Romanak, T. Zhang, R. M. Holt, J. S. Lindler, and R. J. Butsch, 2011, Monitoring a large volume CO2 injection: Year two results from Secarb Project at Denbury’s Cranfield, Mississippi, USA: Energy Procedia, 4, 3478–3485, doi: 10.1016/j.egypro.2011.02.274.EPNRCV1876-6102CrossrefGoogle Scholar
  • Ivanova, A., A. Kashubin, N. Juhojuntti, J. Kummerow, J. Henninges, C. Juhlin, S. Lüth, and M. Ivandic, 2012, Monitoring and volumetric estimation of injected CO2 using 4D seismic, petrophysical data, core measurements and well logging: A case study at Ketzin, Germany: Geophysical Prospecting, 60, 957–973, doi: 10.1111/j.1365-2478.2012.01045.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Kazemeini, S., C. Juhlin, and S. Fomel, 2010, Monitoring CO2 response on surface seismic data; a rock physics and seismic modeling feasibility study at the CO2 sequestration site, Ketzin, Germany: Journal of Applied Geophysics, 16, 109–124, doi: 10.1016/j.jappgeo.2010.05.004.JAGPEA0926-9851CrossrefWeb of ScienceGoogle Scholar
  • Kragh, E., and P. Christie, 2002, Seismic repeatability, normalized rms, and predictability: The Leading Edge, 21, 640–647, doi: 10.1190/1.1497316.1070-485XAbstractGoogle Scholar
  • Li, R., M. Urosevic, and K. Dodds, 2006, Prediction of 4D seismic responses for the Otway Basin CO2 sequestration site: 76th Annual International Meeting, SEG, Expanded Abstracts, 2181–2185.Google Scholar
  • Lu, J., Y. K. Kharaka, J. J. Thordsen, J. Horita, A. Karamalidis, C. Griffith, J. A. Hakala, G. Ambats, D. R. Cole, T. J. Phelps, M. A. Manning, P. J. Cook, and S. D. Hovorka, 2012, CO2–rock–brine interactions in Lower Tuscaloosa Formation at Cranfield CO2 sequestration site, Mississippi, USA: Chemical Geology, 291, 269–277, doi: 10.1016/j.chemgeo.2011.10.020.CHGEAD0009-2541CrossrefWeb of ScienceGoogle Scholar
  • Lu, J., K. Milliken, R. M. Reed, and S. Hovorka, 2011, Diagenesis and sealing capacity of the Middle Tuscaloosa Mudstone at the Cranfield carbon dioxide injection site, Mississippi, USA: Environmental Geosciences, 18, 35–53, doi: 10.1306/eg.09091010015.1075-9565CrossrefGoogle Scholar
  • Mavko, G., and T. Mukerji, 1998, Bounds on low-frequency seismic velocities in partially saturated rocks: Geophysics, 63, 918–924, doi: 10.1190/1.1444402.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Mississippi Oil and Gas Board, 1966, Cranfield Field: Cranfield unit, basal Tuscaloosa reservoir: Adams and Franklin Counties, 42–58.Google Scholar
  • Pevzner, R., V. Shulakova, A. Kepic, and M. Urosevic, 2011, Repeatability analysis of land time‐lapse seismic data: CO2CRC Otway pilot project case study: Geophysical Prospecting, 59, 66–77, doi: 10.1111/j.1365-2478.2010.00907.x.GPPRAR0016-8025CrossrefWeb of ScienceGoogle Scholar
  • Russell, B. H., 1988, Introduction to seismic inversion methods: SEG, vol. 2.AbstractGoogle Scholar
  • Smith, T. M., C. H. Sondergeld, and C. S. Rai, 2003, Gassmann fluid substitutions: A tutorial: Geophysics, 68, 430–440, doi: 10.1190/1.1567211.GPYSA70016-8033AbstractWeb of ScienceGoogle Scholar
  • Urosevic, R., M. Pevzner, V. Shulakova, V. Kepic, E. Caspari, and S. Sharma, 2011, Seismic monitoring of CO2 injection into a depleted gas reservoir — Otway Basin Pilot Project, Australia: Energy Procedia, 4, 3550–3557, doi: 10.1016/j.egypro.2011.02.283.EPNRCV1876-6102CrossrefGoogle Scholar
  • Yilmaz, O., 1987, Seismic data processing: Investigations in Geophysics, SEG, vol. 2.Google Scholar
  • Zhang, R., R. Ghosh, M. K. Sen, and S. Srinivasan, 2012, Time-lapse surface seismic inversion with thin bed resolution for monitoring CO2 sequestration: A case study from Cranfield, Mississippi: International Journal of Greenhouse Gas Control, doi: 10.1016/j.ijggc.2012.08.015.IJGGBW1750-5836CrossrefWeb of ScienceGoogle Scholar