This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

11. Ground-Penetrating Radar

Authors:

Abstract

Introduction

Ground-penetrating radar (GPR) is a relatively young geophysical technique. First uses appeared in the 1960s with radio echo sounding of glaciers and ice sheets (Bailey et al., 1964) followed by permafrost analysis (Annan and Davis, 1976). Applications spread with major changes commencing in the 1990s. The history of GPR is intertwined with the diverse applications of the technique. GPR has the most extensive set of applications of any geophysical technique leading to a wide range of spatial scales and concomitant diversity of instrument configurations. A chronological history can be found in Annan (2002). The accompanying references provide further insight into the technology evolution.

References

  • Alumbaugh, D. L. , and G. A. Newman, 1994, Fast frequency-domain electromagnetic modeling of a 3-D earth using finite differences: 64th Annual International Meeting, SEG, Expanded Abstracts, 369–373. AbstractGoogle Scholar
  • Annan, A. P. , 1973, Radio interferometry depth sounding: Part I—Theoretical discussion: Geophysics, 38, 557–580. AbstractGoogle Scholar
  • Annan, A. P. , 1974, The equivalent source method for electromagnetic scattering: Ph.D. Thesis, Memorial University. Google Scholar
  • Annan, A. P. , 1993, Practical processing of GPR data: Proceedings of the Second Government Workshop on Ground Penetrating Radar, 53–58. Google Scholar
  • Annan, A. P. , 1996, Transmission dispersion and GPR: Journal of Environmental and Engineering Geophysics, 0, 25–136. Google Scholar
  • Annan, A. P. , 2002, The history of ground penetrating radar: Subsurface Sensing Technologies and Applications, 3, 303–320. CrossrefGoogle Scholar
  • Annan, A. P. , and L. T. Chua, 1992, Ground penetrating radar performance predictions: The Geological Survey of Canada, Paper 90-4, 5–13. CrossrefGoogle Scholar
  • Annan, A. P. , and S. W. Cosway, 1992a, Ground penetrating radar survey design: Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, SAGEEP, 329–351. CrossrefGoogle Scholar
  • Annan, A. P. , and S. W. Cosway, 1992b, Simplified GPR beam model for survey design: 62nd Annual International Meeting, SEG, Expanded Abstracts, 356–359. AbstractGoogle Scholar
  • Annan, A. P. , and S. W. Cosway, 1994, GPR frequency selection: Proceedings of the Fifth International Conference on Ground Penetrating Radar, 747–760. CrossrefGoogle Scholar
  • Annan, A. P. , S. W. Cosway, and T. De Souza, 2002, Application of GPR to map concrete to delineate embedded structural elements and defects, in
    S. K. Koppenjan
    and
    H. Lee
    , eds., Proceedings of the Ninth International Conference on Ground Penetrating Radar, SPIE, 4758, 359–364. CrossrefGoogle Scholar
  • Annan, A. P. , and J. L. Davis, 1976, Impulse radar soundings in permafrost: Radio Science, 11, 383–394. CrossrefGoogle Scholar
  • Annan, A. P. , S. W. Cosway, and J. D. Redman, 1991, Water table detection with ground-penetrating radar: 61st Annual Meeting, SEG, Expanded Abstracts, 494–496. AbstractGoogle Scholar
  • Annan, A. P. , and J. L. Davis, 1977, Radar range analysis for geological material: Report of Activities, Part B, Geological Survey of Canada, Paper 77-1B, 117–124. CrossrefGoogle Scholar
  • Annan, A. P. , and J. L. Davis, 1978, Methodology for radar transillumination experiments: Report of Activities, Geological Survey of Canada, Paper, 78-1B, 107–110. CrossrefGoogle Scholar
  • Annan, A. P. , J. L. Davis, and D. Gendzwill, 1988, Radarsounding in potash mines: Saskatchewan, Canada: Geophysics, 53, 1556–1564. AbstractGoogle Scholar
  • Annan, A. P. , J. L. Davis, and G. B. Johnston, 1997, Maximizing 3D GPR image resolution: A simple approach: Proceedings of the High Resolution Geophysics Workshop, University of Arizona, CD only. Google Scholar
  • Annan, A. P. , , 1997, Crosshole GPR for engineering and environmental applications: Proceedings of the High Resolution Geophysics Workshop, University of Arizona, CD only. Google Scholar
  • Annan, A. P. , , 1975, The electromagnetic response of a low-loss, 2-layer dielectric earth for horizontal electric dipole excitation: Geophysics, 40, 285–298. AbstractGoogle Scholar
  • Archie, 1942, The electrical resistivity log as an aid in determining some reservoir characteristics: Trans. AIME, 146, 54–62. CrossrefGoogle Scholar
  • Bailey, J. T. , S. Evans, and G. de Q. Robin, 1964, Radio echo sounding in polar ice sheets: Nature, 204, 420–421. CrossrefGoogle Scholar
  • Banos, A., 1962, Dipole radiation in the presence of a conducting half-space: Pergamon Press, Inc. Google Scholar
  • Banos, M., F. Pivot, and J. Marthelot, 1999, Modeling and filtering of surface scattering in ground-penetrating radar waves: First Break, 17, 215–222. CrossrefGoogle Scholar
  • Barry, K. M. , D. A. Cavers, and C. W. Kneale, 1975, Report on recommended standards for digital tape formats: Geophysics, 40, 344–352. AbstractGoogle Scholar
  • Bergmann, T., J. O. Blanch, J. O. A. Robertsson, and K. Holliger, 1999, A simplified Lax-Wendroff correction for staggered-grid FDTD modeling of electromagnetic wave propagation in frequency-dependent media: Geophysics, 64, 1369–1377. AbstractGoogle Scholar
  • Bergmann, T., Robertsson, J. O. A. , and Holliger, K., 1996, Numerical properties of staggered finite-difference solutions of Maxwell's equations for ground-penetrating radar modeling: Geophysical Research Letters, 23, 45–48. CrossrefGoogle Scholar
  • Berkhout, A. J. , 1984, Seismic resolution: Resolving power of acoustical echo techniques: Geophysics Press. Google Scholar
  • Bleistein, N., and S. H. Gray, 2001, From the Hagedoorn imaging technique to Kirchhoff migration and inversion: Geophysical Prospecting, 49, 629–643. CrossrefGoogle Scholar
  • Born, M., and E. Wolf, 1980, Principles of optics, 6th Edition: Pergamon Press, Inc. Google Scholar
  • Brekhovskikh, L. M. , 1960, Waves in layered media: Academic Press Inc. Google Scholar
  • Brewster, M. L. , and A. P. Annan, 1994, Ground-penetrating radar monitoring of a controlled DNAPL release: 200 MHz radar: Geophysics, 59, 1211–1221. AbstractGoogle Scholar
  • Burhl, M., G. J. O. Vermeer, and M. Kiehn, 1996, Fresnel zones for broadband data: Geophysics, 61, 600–604. AbstractGoogle Scholar
  • Cai, J., and G. A. McMechan, 1995, Ray-based synthesis of bistatic ground-penetrating radar profiles: Geophysics, 60, 87–96. AbstractGoogle Scholar
  • Carcione, J. M. , 1996, Ground-penetrating radar: Wave theory and numerical simulation in lossy anisotropic media: Geophysics, 61, 1664–1677. AbstractGoogle Scholar
  • Cerveny, V., and R. Ravindra, 1971, Theory of seismic head waves: University of Toronto Press, 312. CrossrefGoogle Scholar
  • Davis, J. L. , and A. P. Annan, 1986, Borehole radar sounding in CR-6, CR-7, and CR-8 at Chalk River, Ontario: Technical Record TR-401, Atomic Energy of Canada Ltd. Google Scholar
  • Davis, J. L. , and A. P. Annan, 1989, Ground penetrating radar for high-resolution mapping of soil and rock stratigraphy: Geophysical Prospecting, 37, 531–551. CrossrefGoogle Scholar
  • Dix, C. H. , 1955, Seismic velocities from surface measurements: Geophysics, 20, 68–86. AbstractGoogle Scholar
  • Duijndam, A. J. W. , M. A. Schonewille, and C. O. H. Hindriks, 1999, Reconstruction of band-limited signals, irregularly sampled along one spatial direction: Geophysics, 64, 524–538. AbstractGoogle Scholar
  • Dunbar, J., L. Nordt, and J. Abrahan, 1997, Ground-penetrating radar transect across the barrier flat of Galveston Island, Texas: 67th Annual International Meeting, SEG, Expanded Abstracts, 768–771. AbstractGoogle Scholar
  • Elliot, R. S. , 1981, Antenna theory and design: Prentic-Hall, Inc. Google Scholar
  • Endres, A. L. , and R. Knight, 1992, A theoretical treatment of the effect of microscopic fluid distribution on the dielectric properties of partially saturated rocks: Geophysical Prospecting, 40, 307–324 CrossrefGoogle Scholar
  • Engheta, N., C. H. Papas, and C. Elachi, 1982, Radiation patterns of interfacial dipole antennas: Radio Science, 17, 1557–1566. CrossrefGoogle Scholar
  • Fisher, E., G. A. McMechan, and A. P. Annan, 1992, Acquisition and processing of wide-aperture ground penetrating radar data: Geophysics, 57, 495. AbstractGoogle Scholar
  • Fisher, E., G. A. McMechan, A. P. Annan, and S. W. Cosway, 1992, Examples of reverse-time migration of single-channel, ground-penetrating radar profiles: Geophysics, 57, 577–586. AbstractGoogle Scholar
  • Friere, S. L. M. , and T. J. Ulrych, 1988, Application of singular decomposition to vertical seismic profiling: Geophysics, 53, 778–785. AbstractGoogle Scholar
  • Gerlitz, K., , 1993, Processing ground penetrating radar data to improve resolution of near-surface targets: Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems. AbstractGoogle Scholar
  • Giannopoulos, A., 1997, The investigation of transmission line matrix and finite-difference time-domain methods for the forward problem of ground probing radar: D. Phil. thesis, University of York. Google Scholar
  • Gilson, E. W. , J. D. Redman, J. A. Pilon, and A. P. Annan, 1996, Near surface applications of borehole radar: Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, 545–553. CrossrefGoogle Scholar
  • Goodman, D., 1994, Ground-penetrating radar simulation in engineering and archaeology: Geophysics, 59, 224–232. AbstractGoogle Scholar
  • Grasmueck, M., 1996, 3-D Ground-penetrating radar applied to fracture imaging in Gneiss: Geophysics, 61, 1050–1064. AbstractGoogle Scholar
  • Greaves, R. J. , D. P. Lesmes, J. M. Lee, and M. N. Toksoz, 1996, Velocity variation and water content estimated from multioffset, ground penetrating radar: Geophysics, 61, 683–695. AbstractGoogle Scholar
  • Greaves, R. J. , and M. N. Toksoz, 1994, Applications of multioffset, ground-penetrating radar: Proceedings of the symposium on the application of geophysics to engineering and environmental problems, SAGEEP, 775–793. AbstractGoogle Scholar
  • Green, A., , 2002, 3D acquisition, processing and imaging of ground penetrating radar data: GPR 2002 Tutorial 2 Notes, Proceedings of the Ninth International Conference on Ground Penetrating Radar, CD only. Google Scholar
  • Grochenig, K., 1993, A discrete theory of irregular sampling: Linear Algebra and Its Applications, 193, 129–150. CrossrefGoogle Scholar
  • Hansen, S., 1942, Electrical wave analysis: US Patent 2 280 524.Google Scholar
  • Hasted, J. B. , 1972, Liquid water dielectric properties, in
    F. Franks
    , ed., Water, a comprehensive treatise, 1, The physics and physical chemistry of water: Plenum Press, 255–310. CrossrefGoogle Scholar
  • Heincke, B., T. Spillman, H. Horstmeyer, and A. G. Green, 2002, 3-D georadar surveying in areas of moderate topographic relief, in
    S. K. Koppenjan
    and
    H. Lee
    , eds., Proceedings the of Ninth International Conference on Ground Penetrating Radar, SPIE, 4758, 223–227. CrossrefGoogle Scholar
  • Hohmann, 1987, Numerical modeling for electromagnetic methods of geophysics, in
    M. N. Nabighian
    , ed., Electromagnetic methods in applied geophysics, v. 1, Theory: SEG, 313–361. Google Scholar
  • Holliger, K., and T. Bergmann, 2002, Numerical modeling of borehole georadar data: Geophysics, 67, 1249–1257. AbstractGoogle Scholar
  • Holtzman, R., and R. Kastner, 2001, The time-domain discrete Green's function method (GFM) characterizing the FDTD grid boundary: IEEE Transactions of Antennas and Propagation, 49, 1079–1093. CrossrefGoogle Scholar
  • Hubbard, S., , 1997, Estimation of permeable pathways and water content using tomographic radar data: The Leading Edge, 16, 1623–1628. AbstractGoogle Scholar
  • Irving, J. D. , and R. J. Knight, 2003, Removal of wavelet dispersion from ground-penetrating radar data: Geophysics, 68, 960–970. AbstractGoogle Scholar
  • Jackson, J. D. , 1962, Classical electrodynamics: John Wiley & Sons, Inc. Google Scholar
  • Jol, H. M. , 1996, Digital ground penetrating radar (GPR): A new geophysical tool for coastal barrier research (Examples from the Atlantic, Gulf and Pacific coasts U.S.A.): Journal of Coastal Research, Fall, 153–163. Google Scholar
  • Jol, H. M. , D. G. Smith, and R. A. Meyers, 1996, Three dimensional GPR imaging of a fan-foreset delta: An example from Brigham City, Utah, U.S.A: Proceedings of the Sixth International Conference on Ground Penetrating Radar, 33–37. Google Scholar
  • Keller, G. V. , 1982, Electrical properties of rocks and minerals: CRC handbook of physical properties of rocks, CRC Press. Google Scholar
  • Kline, M., and I. W. Kay, 1965, Electromagnetic theory and geometrical optics: Interscience Publishers. Google Scholar
  • Knapp, R. W. , 1991, Fresnel zones in the light of broadband data: Geophysics, 56, 354–359. AbstractGoogle Scholar
  • Kraus, J. D. , 1988, Antennas: McGraw-Hill Book Co. Google Scholar
  • Lampe, B., and K. Holliger, 2000, Finite-difference modeling of ground-penetrating radar antenna radiation: Proceedings of the 8th International Conference on Ground Penetrating Radar, 556–560. CrossrefGoogle Scholar
  • Lehmann, F., and A. G. Green, 1999, Semiautomated georadar data acquisition in three dimensions: Geophysics, 64, 719–731. AbstractGoogle Scholar
  • Lehmann, F., and A. G. Green, 2000, Topographic migration of georadar data: Implications for acquisition and processing: Geophysics, 65, 836–848. AbstractGoogle Scholar
  • Luneburg, R. K. , 1964, Mathematical theory of optics: University of California Press. CrossrefGoogle Scholar
  • McMechan, G. A. , G. C. Gaynor, and R. B. Szerbiak, 1997,Use of ground-penetrating radar for 3-D sedimentological characterization of clastic reservoir analogs: Geophysics, 62, 786–796. AbstractGoogle Scholar
  • Moran, M. L. , and S. A. Arcone, 2000, GPR radiation pattern effects on 3D Kirchhoff imaging: Proceedings of the 8th International Conference on Ground Penetrating Radar, 208–212. Google Scholar
  • Neuf, D., D. Brown, and R. Jaracz, 1973, Multioctave double balanced mixer: Microwave Journal, 16, 13–14. Google Scholar
  • Nobes, D. C. , and A. P. Annan, 2000, “Broadside” versus “end-fire” radar response: Some simple illustrative examples, in
    D. A. Noon
    ,
    G. F. Stickley
    ,
    D. Longstaff
    , eds., Proceedings of the Eighth International Conference on Ground Penetrating Radar, SPIE, 4084, 696–701. CrossrefGoogle Scholar
  • Noon, D. A. , D. Longstaff, and R. J. Yelf, 1994, Advances in the development of step frequency ground penetrating radar: Fifth International Conference on Ground Penetrating Radar, v. 1, 117–131. Google Scholar
  • Oguz, U., and G. Levent, 2001, Modeling of ground-penetrating-radar antennas with shields and simulated absorbers: IEEE Transactions on Antennas and Propagation, 49, 1560–1567. CrossrefGoogle Scholar
  • Olhoeft, G. R. , 1981, Electrical properties of rocks, in
    Y. S. Touloukian
    ,
    W. R. Judd
    , and
    R. F. Roy
    , eds., Physical properties of rocks and minerals, II, McGraw-Hill Book Co., Inc., 257–330. Google Scholar
  • Olhoeft, G. R. , 1987, Electrical properties from 10−3 to 10+9 Hz-physics and chemistry: Proceedings of the Second International Symposium on the Physics and Chemistry of Porous Media, American Institute of Physics Conference Proceedings, 154, 281–298. Google Scholar
  • Olhoeft, G. R. , 1988, Interpretation of hole-to-hole radar measurements: Proceedings of the Third Technical Symposium on Tunnel Detection, 616–629. Google Scholar
  • Oldenburg, D. W. , P. R. McGillivary, and R. G. Ellis, 1993, Generalized subspace method for large scale inverse problems: Geophysics Journal International, 144, 12–20. CrossrefGoogle Scholar
  • Olsson, O., L. Falk, O. Forslund, and E. Sandberg, 1987, Crosshole investigations—Results from borehole radar investigations: Stripa Project TR 87-11. SKB. Google Scholar
  • Olsson, O., , 1992. Fracture characterization in crystalline rock by borehole radar, ground penetrating radar: Geological Survey of Canada, Paper 90-4, 139–150. CrossrefGoogle Scholar
  • Owen, T. R. , 1981, Cavity detection using VHF hole to hole electromagnetic techniques: Proceedings of the Second Tunnel Detection Symposium, 126–141. Google Scholar
  • Parkin, G., J. D. Redman, P. von Bertoldi, and Z. Zhang, 2000, Measurement of soil water content below a wastewater trench using ground penetrating radar: Water Resources Research, 36, 2147–2154. CrossrefGoogle Scholar
  • Pearce, J., and D. Mittleman, 2002, Defining the fresnel zone for broadband radiation: Physical Review E 66, 056602. CrossrefGoogle Scholar
  • Peterson, J. E. , 2001, Pre-inversion corrections and analysis of radar tomographic data: Journal of Environmental and Engineering Geophysics, 6, 1–18. AbstractGoogle Scholar
  • Powers, M. H. , and G. R. Olhoeft, 1994, Modeling dispersive ground penetrating radar data: Proceedings of the Fifth International Conference on Ground-Penetrating Radar, 173–183. Google Scholar
  • Pullan, S. E. , 1990, Recommended standard for seismic (/radar) files in the personal computer environment: Geophysics, 55, 1260–1271. AbstractGoogle Scholar
  • Redman, J. D. , S. M. DeRyck, and A. P. Annan, 1994, Detection of LNAPL pools with GPR: Theoretical modeling and surveys of controlled spill: Proceedings of the Fifth International Conference on Ground Penetrating Radar, 1283–1294. CrossrefGoogle Scholar
  • Redman, J. D. , G. Parkin, and A. P. Annan, 2000, Borehole GPR measurement of soil water content during an infiltration experiment: Proceedings of the Eighth International Conference on Ground Penetrating Radar Conference, 501–505. CrossrefGoogle Scholar
  • Reitz, J. R. , and F. J. Milford, 1960, Foundations of electromagnetic theory: Addison-Wesley Publishing Co. Google Scholar
  • Roberts, R. L. , and J. J. Daniels, 1996, Analysis of GPR polarization phenomena: Journal of Environmental and Engineering Geophysics, 1, 139–157. AbstractGoogle Scholar
  • Schmitt, H. J. , C. W. Harrison, and C. S. Williams, 1966, Calculated and experimental response of thin cyndrical antennas to pulse excitation: IEEE Transactions on Antennas and Propagation, AP14, 120–126. CrossrefGoogle Scholar
  • Sigurdsson, T., and T. Overgaard, 1996, Application of GPR for 3D visualization of geological and structural variation in a limestone formation: Proceedings of the Sixth International Conference on Ground Penetrating Radar, 39–44. Google Scholar
  • Skolnik, M. I. , 1970, Radar handbook, McGraw-Hill Book Co., Inc. Google Scholar
  • Smith, D. G. , and H. M. Jol, 1992, Ground-penetrating radar investigation of a Lake Bonneville delta, Provo level, Brigham City, Utah: Geology, 20, 1083–1086. CrossrefGoogle Scholar
  • Smith, D. G. , and H. M. Jol, 1995, Ground penetrating radar: Antenna frequencies and maximum probable depths of penetrating in Quaternary sediments: Journal of Applied Geophysics, 33, 93–100. CrossrefGoogle Scholar
  • Smith, G. S. , 1984, Directive properties of antennas for transmission into a material half-space: IEEE Transactions on Antennas and Propagation, AP-32, 232–246. CrossrefGoogle Scholar
  • Smythe, W. R. , 1989, Static and dynamic electricity: Taylor and Francis, A SUMMA book. Google Scholar
  • Sommerfeld, A., 1949, Partial differential equations in physics: Academic Press Inc. CrossrefGoogle Scholar
  • Stickley, G. F. , , 1998, Gated stepped-frequency GPR field demonstrations: Seventh International Conference on Ground-Penetrating Radar, v. 1, 343–347. Google Scholar
  • Sun, J., and R. A. Young, 1995, Recognizing surface scattering in ground-penetrating radar data: Geophysics, 60, 1378–1385. AbstractGoogle Scholar
  • Tarantola, A., 1987, Inverse problem theory: Elsevier Science E.V. Google Scholar
  • Tillard, T., and J -C Dubois, 1992, Influence and lithology on radar echoes: Analysis with respect to electromagnetic parameters and rock anisotropy: Fourth International Conference on Ground Penetrating Radar, 95–102. CrossrefGoogle Scholar
  • Todoeschuck, J. P. , , 1992, Deconvolution of ground probing radar data, in
    J. Pilon
    , ed., Ground penetrating radar: Geological Survey of Canada, Paper 90-4, 227–230. CrossrefGoogle Scholar
  • Turner, G., 1992, Propagation deconvolution: Fourth International Conference on Ground Penetrating Radar, 85–93. CrossrefGoogle Scholar
  • Topp, G. C. , J. L. Davis, and A. P. Annan, 1980, Electromagnetic determination of soil water content: Measurements in coaxial transmission lines: Water Resources Research, 16, 574–582. CrossrefGoogle Scholar
  • van der Kruk, J., 2001, Three dimensional imaging of multi-component ground penetrating radar: Ph.D. Thesis, Delft University of Technology. Google Scholar
  • van Overmeeren, R. A. , 1998, Radar facies of unconsolidated sediments in The Netherlands: A radar stratigraphy interpretation method for hydrogeology: Journal of Applied Geophysics, 40, 1–18. CrossrefGoogle Scholar
  • Von Hippel, A. R.
    , ed., 1954, Dielectric materials and applications: John Wiley and Sons, Inc. Google Scholar
  • Vozoff, K., G. H. Smith, P. J. Hatherly, and S. Thompson, 1993, An overview of the radio imaging method in Australian coal mining: First Break, 10, 13–21. Google Scholar
  • Wait, J. R. , 1962, Electromagnetic waves in stratified media: Pergamon Press, (Revised edition, 1970). Google Scholar
  • Wait, J. R. , 1982, Geo-electromagnetism: Academic Press Inc. Google Scholar
  • Wang, T., and A. C. Tripp, 1996, FDTD simulations of EM waves propagation in a 3-D media: Geophysics, 61, 110–120. AbstractGoogle Scholar
  • Ward, S. H. , 1967, The Electromagnetic method: Mining Geophysics, v. 2, SEG, 224–372. AbstractGoogle Scholar
  • Ward, S. H. , and G. W. Hohmann, 1987, Electromagnetic theory for geophysical applications, in M. N. Nabighian, ed., Electromagnetic methods in applied geophysics, v. 1, Theory: SEG, 131–311. AbstractGoogle Scholar
  • Watts, R. D. , and A. W. England, 1976, Radio-echo sounding of temperate glaciers: Ice properties and sounder design criteria: Journal of Glaciology, 21, 39–48. Google Scholar
  • Wharton, R. P. , G. A. Hazen, R. N. Rau, and D. L. Best, 1980, Advancements in electromagnetic propagation logging: Society Petroleum Engineering, Paper 9041. CrossrefGoogle Scholar
  • White, R. E. , 1991, Properties of instantaneous seismic attributes: The Leading Edge, 10, no. 7, 26–32. AbstractGoogle Scholar
  • Wills, R. H. , 1992, A digital phase coded ground probing radar: Ground penetrating radar, in
    J. Pilon
    , ed., Geological Survey of Canada, Paper 90-4, 231–235. CrossrefGoogle Scholar
  • Wright, D. L. , J. A. Bradley, T. P. Grover, 1994, Data acquisition systems for ground penetrating radar with example applications from the air, the surface and boreholes: Fifth International Conference on Ground Penetrating Radar, 3, 1075–1089. Google Scholar
  • Yee, K. S. , 1966, Numerical solutions of initial boundary value problems involving Maxwell's equations in isotopic media: IEEE Transactions on Antennas and Propagation, 14, 302–307. CrossrefGoogle Scholar
  • Yilmaz, O., 2000, Seismic data analysis—Processing, inversion, and interpretation of seismic data: SEG. AbstractGoogle Scholar
  • Young, J. L. , and R. O. Nelson, 2001, A summary and systematic analysis of FDTD algorithms for linearly dispersive media: IEEE Transactions on Antennas and Propagation, 43, 61–77. CrossrefGoogle Scholar
  • Young, R. A. , and J. Sun, 1998, Noise attenuation using 3-D GPR methods: Proceedings of the Seventh International Conference on Ground Penetrating Radar, 238–244. Google Scholar
  • Zeng, X., G. A. McMechan, J. Cai, and H. W. Chen, 1995, Comparison of ray and Fourier methods for modeling monostatic ground-penetrating radar profiles: Geophysics, 60, 1727–1734. AbstractGoogle Scholar
  • Proceedings of the International Workshop on the Remote Estimation of Sea Ice Thickness Center for Cold Ocean Resources Engineering (C-CORE), St. John's Newfoundland, Sept. 25–26, 1979. Google Scholar
  • Proceedings of the Ground-Penetrating Radar Workshop, Geological Survey of Canada, Ottawa, Ontario, Canada, May 24–26, 1988. Google Scholar
  • Abstracts of the Third International Conference on Ground Penetrating Radar, United States Geological Survey, Lakewood, Colorado, USA May 24–26, 1990. Google Scholar
  • Proceedings of the Fourth International Conference on Ground Penetrating Radar, Geological Survey of Finland, Rovaniemi, Finland, June 8–13, 1992. Google Scholar
  • Proceedings of the Fifth International Conference on Ground Penetrating Radar (GPR '94), Kitchener, Ontario, Canada, June 12–16, 1994. Google Scholar
  • Proceedings of the Sixth International Conference on Ground Penetrating Radar (GPR '96), Sendai, Japan, Sept. 30–Oct. 3, 1996. Google Scholar
  • Proceedings of the Seventh International Conference on Ground Penetrating Radar (GPR '98), Lawrence, Kansas, USA, May 27–30, 1998. Google Scholar
  • Proceedings of the Eighth International Conference on Ground Penetrating Radar (GPR 2000), Goldcoast, Australia, May 23–26, 2000, SPIE vol. 4084. Google Scholar
  • Proceedings of the Ninth International Conference on Ground Penetrating Radar (GPR 2002), Santa Barbara, California, Apr 29–May 2, 2002. Google Scholar