This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.


3D seismic traveltime tomography imaging of the shallow subsurface at the C O2 SINK project site, Ketzin, Germany

A 3D reflection seismic survey was performed in 2005 at the Ketzin carbon dioxide (CO2) pilot geological-storage site (the CO2SINK project) near Berlin, Germany, to image the geological structure of the site to depths of about 1km. Because of the acquisition geometry, frequency limitations of the source, and artefacts of the data processing, detailed structures shallower than about 150m were unclear. To obtain structural images of the shallow subsurface, we applied 3D traveltime tomography to data near the top of the Ketzin anticline, where faulting is present. Understanding the shallow subsurface structure is important for long-term monitoring aspects of the project after CO2 has been injected into a saline aquifer at about 650-m depth. We used a 3D traveltime tomography algorithm based on a combination ofsolving for 3D velocity structure and static corrections in the inversion process to account for artefacts in the velocity structure because of smearing effects from the unconsolidated cover. The resulting velocity model shows low velocities of 8001200ms in the uppermost shallow subsurface of the study area. The velocity reaches about 1800ms at a depth of 6080m. This coincides approximately with the boundary between Quaternary units, which contain the near-surface freshwater reservoir and the Tertiary clay aquitard. Correlation of tomographic images with a similarity attribute slice at 150ms (about 150-m depth) indicates that at least one east-west striking fault zone observed in the reflection data might extend into the Tertiary unit. The more detailed images of the shallow subsurface from this study provided valuable information on this potentially risky area.


  • Aki, K., A. Christoffersson, and E. S. Husebye, 1977, Determination of 3-dimensional seismic structure of lithosphere: Journal of Geophysical ResearchJGREA20148-0227, 82, 277–296.CrossrefWeb of ScienceGoogle Scholar
  • Arts, R., O. Eiken, A. Chadwick, P. Zweigel, L. van der Meer, and B. Zinszner, 2004, Monitoring of C O2 injected at Sleipner using time lapse seismic data: EnergyENEYDS0360-5442, 29, 1383–1392.10.1016/ of ScienceGoogle Scholar
  • Benz, H. M. , B. A. Chouet, P. B. Dawson, J. C. Lahr, R. A. Page, and J. A. Hole, 1996, Three-dimension P and S wave velocity structure of Redoubt Volcano, Alaska: Journal of Geophysical ResearchJGREA20148-0227, 101, 8111–8128.10.1029/95JB03046CrossrefWeb of ScienceGoogle Scholar
  • Bergman, B., A. Tryggvason, and C. Juhlin, 2004, High-resolution seismic tomography incorporating static corrections applied to a till-covered bedrock environment: GeophysicsGPYSA70016-8033, 69, 1082–1090.10.1190/1.1778250AbstractWeb of ScienceGoogle Scholar
  • Bergman, B., A. Tryggvason, and C. Juhlin, 2006, Seismic tomography studies of cover thickness and near-surface bedrock velocities: GeophysicsGPYSA70016-8033, 71, U77–U84.10.1190/1.2345191AbstractWeb of ScienceGoogle Scholar
  • Berner, K., and M. Pawlitzky, 2000, Hydrogeologische Karte von Brandenburg 1:50.000, Karte des weitgehend bedeckten Grundwasserleiterkomplexes GWLK2. In: Landesamt für Geowissenschaften und Rohstoffe Brandenburg, Hydrogeologiesche Karte von Brandenburg, Blatt L 3542 Ketzin, Kleinmachnow.Google Scholar
  • Bijwaard, H., W. Spakman, and E. R. Engdahl, 1998, Closing the gap between regional and global travel time tomography: Journal of Geophysical ResearchJGREA20148-0227, 103, 30055–30078.10.1029/98JB02467CrossrefWeb of ScienceGoogle Scholar
  • Chang, X., Y. Liu, H. Wang, F. Li, and J. Chen, 2002, 3-D tomographic static correction: GeophysicsGPYSA70016-8033, 67, 1275–1285.10.1190/1.1500390AbstractWeb of ScienceGoogle Scholar
  • Deen, T., and K. Gohl, 2002, 3-D tomographic seismic inversion of a paleochannel system in central New South Wales, Australia: GeophysicsGPYSA70016-8033, 67, 1364–1371.10.1190/1.1512741AbstractWeb of ScienceGoogle Scholar
  • Förster, A., B. Norden, K. Zinck-Jørgensen, P. Frykman, J. Kulenkampff, E. Spangenberg, J. Erzinger, M. Zimmer, J. Kopp, G. Borm, C. Juhlin, C. Cosma, and S. Hurter, 2006, Baseline characterization of the C O2 SINK geological storage site at Ketzin, Germany: Environmental GeosciencesZZZZZZ1075-9565, 13, 145–161.CrossrefGoogle Scholar
  • Heincke, B., H. Maurer, A. G. Green, H. Willenberg, T. Spillmann, and L. Burlini, 2006, Characterizing an unstable mountain slope using shallow 2D and 3D seismic tomography: GeophysicsGPYSA70016-8033, 71, no. 6, B241–B256.10.1190/1.2338823AbstractWeb of ScienceGoogle Scholar
  • Juhlin, C., R. Giese, K. Zinck-Jørgensen, C. Cosma, H. Kazemeini, N. Juhojuntti, S. Luth, B. Norden, and A. Förster, 2007, 3D baseline seismics at Ketzin, Germany: The C O2 SINK project: GeophysicsGPYSA70016-8033, 72, no. 5, B121–B132.10.1190/1.2754667AbstractWeb of ScienceGoogle Scholar
  • Kazemeini, H., C. Juhlin, K. Zinck-Jørgensen, and B. Norden, 2008, Application of the continuous wavelet transform on seismic data for mapping of channel deposits and gas detection at the C O2 SINK site, Ketzin, Germany: Geophysical ProspectingGPPRAR0016-8025.10.1111/j.1365-2478.2008.00723.xCrossrefGoogle Scholar
  • Kissling, E., 1988, Geotomography with local earthquake data: Reviews of GeophysicsRVGPB48755-1209, 26, 659–698.CrossrefWeb of ScienceGoogle Scholar
  • Kissling, E., S. Husen, and F. Haslinger, 2001, Model parametrization in seismic tomography: A choice of consequence for the solution quality: Physics of the Earth and Planetary InteriorPEPIAM0031-9201, 123, 89–101.CrossrefWeb of ScienceGoogle Scholar
  • Lanz, E., H. Maurer, and A. G. Green, 1998, Refraction tomography over a buried waste disposal site: GeophysicsGPYSA70016-8033, 63, 1414–1433.10.1190/1.1444443AbstractWeb of ScienceGoogle Scholar
  • Lévêque, J. J. , L. Riverra, and G. Wittlinger, 1993, On the use of the checkerboard test to assess the resolution of tomographic inversions: Geophysical Journal InternationalGJINEA0956-540X, 115, 313–318.CrossrefWeb of ScienceGoogle Scholar
  • Linde, N., A. Binley, A. Tryggvason, L. B. Pedersen, and A. Revil, 2006, Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data: Water Resources ResearchWRERAQ0043-1397, 42.10.1029/2006WR005131CrossrefGoogle Scholar
  • Manhenke, V., 2002, Hydrostratigraphische Gliederung der känozoischen Lockergesteine von Brandenburg, Brandenburgische Geowissenschaftliche Beiträge, 9, 59–64 (in German).Google Scholar
  • Marti, D., R. Carbonell, I. Flecha, I. Palomeras, J. Font-Capo, E. Vazquez-Sune, and A. Perez-Estaun, 2008, High-resolution seismic characterization in an urban area: Subway tunnel construction in Barcelona, Spain: GeophysicsGPYSA70016-8033, 73, no. 2, B41–B50.10.1190/1.2832626AbstractWeb of ScienceGoogle Scholar
  • Marti, D., R. Carbonell, A. Tryggvason, J. Escuder, and A. Perez-Estaun, 2002, Mapping brittle fracture zones in three dimensions: High resolution traveltime seismic in a granitic pluton: Geophysical Journal InternationalGJINEA0956-540X, 149, 95–105.10.1046/j.1365-246X.2002.01615.xCrossrefWeb of ScienceGoogle Scholar
  • Paige, C. C. , and M. A. Saunders, 1982, An algorithm for sparse linear equations and sparse least squares: ACM Transactions on Mathematical SoftwareACMSCU0098-3500, 8, 43–71.10.1145/355984.355989CrossrefWeb of ScienceGoogle Scholar
  • Podvin, P., and I. Lecomte, 1991, Finite different computation of traveltimes in very contrasted velocity models: A massively parallel approach and its associated tools: Geophysical Journal InternationalGJINEA0956-540X, 105, 271–284.10.1111/j.1365-246X.1991.tb03461.xCrossrefWeb of ScienceGoogle Scholar
  • Prevedel, B., L. Wohlgemuth, J. Henninges, K. Krüger, B. Norden, A. Förster, and the CO2SINK group, 2008, Drilling of the C O2 SINK boreholes for C O2 geological storage testing: Scientific DrillingSCDREC0934-4365, 6, 32–37.CrossrefGoogle Scholar
  • Tryggvason, A., and B. Bergman, 2006, A traveltime reciprocity discrepancy in the Podvin & Lecomte time 3d finite difference algorithm: Geophysical Journal InternationalGJINEA0956-540X, 165, 432–435.10.1111/j.1365-246X.2006.02925.xCrossrefWeb of ScienceGoogle Scholar
  • Tryggvason, A., S. Th. Rognvaldsson, and O. G. Flovenz, 2002, Three-dimensional imaging of the P- and S-wave velocity structure and earthquake locations beneath Southwest Iceland: Geophysical Journal InternationalGJINEA0956-540X, 151, 848–866.10.1046/j.1365-246X.2002.01812.xCrossrefWeb of ScienceGoogle Scholar
  • Vidale, J., 1988, Finite-difference calculation of travel times: Bulletin of the Seismological Society of AmericaBSSAAP0037-1106, 78, 2062–2076.Web of ScienceGoogle Scholar
  • Yordkayhun, S., C. Juhlin, R. Giese, and C. Cosma, 2007, Shallow velocity-depth model using first arrival traveltime inversion at the C O2 SINK site, Ketzin, Germany: Journal of Applied GeophysicsJAGPEA0926-9851, 63, 68–79.CrossrefWeb of ScienceGoogle Scholar
  • Zelt, C. A. , A. Zaria, and A. Levander, 2006, 3D seismic refraction traveltime tomography at a groundwater contamination site: GeophysicsGPYSA70016-8033, 71, no. 5, H67–H78.10.1190/1.2258094AbstractWeb of ScienceGoogle Scholar
  • Zhu, X., D. P. Sixta, and B. G. Angstman, 1992, Tomostatics: Turning-ray tomography+static corrections: The Leading EdgeLEEDFF1070-485X, 11, 15–23.10.1190/1.1436864AbstractGoogle Scholar