This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Inversion of inductive electromagnetic data in highly conductive terrains

Despite the increasing use of controlled-source frequency-domain EM data to characterize shallow subsurface structures, relatively few inversion algorithms have been widely applied to data from real-world settings, particularly in high-conductivity terrains. In this study, we develop robust and convergent regularized, least-squares inversion algorithms based on both linear and nonlinear formulations of mutual dipole induction for the forward problem. A modified version of the discrepancy principle based on a priori information is implemented to select optimal smoothing parameters that simultaneously guarantee the stability and best-fit criteria. To investigate the problems of resolution and equivalence, we consider typical layered-earth models in one and two dimensions using both synthetic and observed data. Synthetic examples show that inversions based on the nonlinear forward model more accurately resolve subsurface structure, and that inversions based on the linear forward model tend to drastically underpredict high conductivities at depth. Inversions of actual field data from well-characterized sites (e.g., National Geotechnical Experimentation Site; sand-dominated coastal aquifer in the Georgia Bight) are used to test the applicability of the model to terrains with different characteristic conductivity structure. A comparison of our inversion results with existing cone-penetrometer and downhole-conductivity data from these field sites demonstrates the ability of the inversions to constrain conductivity variations in practical applications.

References

  • Anderson, W. L., 1979, Numerical integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering: Geophysics,GPYSA70016-8033 44, 1287–1305.AbstractWeb of ScienceGoogle Scholar
  • Asten, M. W., 1999, Mining geophysics: When, where, and how?, in M. OristaglioB. Spies, eds., Three-dimensional electromagnetics: SEG, Geophysical Developments, 7, 477–488.Google Scholar
  • Borchers, B., T. Uram, and J. M. H. Hendrickx, 1997, Tikhonov regularization of electrical conductivity depth profiles in field soils: Soil Science Society America Journal,SSSJD40361-5995 61, 1004–1009.CrossrefWeb of ScienceGoogle Scholar
  • Broyden, C. G., 1965, A class of methods for solving nonlinear simultaneous equations: Mathematics of Computation,MCMPAF0025-5718 19, 577–593.CrossrefGoogle Scholar
  • Chave, A. D., 1983, Numerical integration of related Hankel transforms by quadrature and continued fraction expansion: Geophysics,GPYSA70016-8033 48, 1671–1686.AbstractWeb of ScienceGoogle Scholar
  • Constable, S., R. L. Parker, and C. G. Constable, 1987, Occam's inversion: A practical algorithm for generating smooth models from electromagnetic sounding data: Geophysics,GPYSA70016-8033 52, 289–300.AbstractWeb of ScienceGoogle Scholar
  • deGroot, C., and S. Constable, 1990, Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data: Geophysics,GPYSA70016-8033 55, 1613–1624.AbstractWeb of ScienceGoogle Scholar
  • Duckworth, K., and A. Rogozinski, 1991, Scale model and field results for a new electromagnetic device: 61st Annual International Meeting SEG, Expanded Abstracts, 476–479.Google Scholar
  • Esparza, F. J., and E. Gomez-Trevinao, 1987, Electromagnetic sounding in the resistive limit and the Backus-Gilbert method for estimating conductivities: Geoexploration,GEOXAV0016-7142 24, 441–454.CrossrefGoogle Scholar
  • Farquharson, C. G., and D. W. Oldenburg, 2000, Simultaneous one-dimensional inversion of electromagnetic loop-loop data for both magnetic susceptibility and electrical conductivity: GeoCanada 2000, Expanded Abstracts, 1–4.Google Scholar
  • Farquharson, C. G., and D. W. Oldenburg, 2004, A comparison of automatic techniques for estimating the regularization parameter in nonlinear inverse problems: Geophysical Journal International,GJINEA0956-540X 156, 411–425.CrossrefWeb of ScienceGoogle Scholar
  • Finke, K. A., and P. W. Mayne, 1999, Piezocone tests in U.S. Atlantic Piedmont residual soils: Proceedings, XI Pan-American Conference on Soil Mechanics and Geotechnical Engineering,GJINEA0956-540X 1, 329–334.Google Scholar
  • Frischknecht, F. C., 1967, Fields about an oscillating dipole over a two-layer earth and application to ground and airborne electromagnetic surveys: Quarterly Journal Colorado School of Mines, 62, no. 1, 1–370.Google Scholar
  • Fullager, P. K., and D. W. Oldenburg, 1984, Inversion of horizontal loop electromagnetic frequency soundings: Geophysics,GPYSA70016-8033 49, 150–164.AbstractWeb of ScienceGoogle Scholar
  • Ghosh, D. P., 1971, The application of linear filtering theory to the direct interpretation of geoelectrical resistivity sounding measurements: Geophysical Prospecting,GPPRAR0016-8025 19, 192–217.CrossrefGoogle Scholar
  • Guptasarma, D., 1982, Optimization of short digital linear filters for increased accuracy: Geophysical Prospecting,GPPRAR0016-8025 30, 501–514.CrossrefWeb of ScienceGoogle Scholar
  • Hansen, P. C., 1992, Analysis of discrete ill-posed problems by means of the L-curve: Society for Industrial and Applied Mathematics Review, (SIAM),SJNAEQ0036-1429 34, 561–580.CrossrefWeb of ScienceGoogle Scholar
  • Hansen, P. C., 1998, Rank-deficient and discrete ill-posed problems: Numerical aspects of linear inversion: Society for Industrial and Applied Mathematics Review, (SIAM).Google Scholar
  • Inman, J. R., 1975, Resistivity inversion with ridge regression: Geophysics,GPYSA70016-8033 40, 798–817.AbstractWeb of ScienceGoogle Scholar
  • Johansen, H. K., and K. Sorensen, 1979, Fast Hankel transforms: Geophysical Prospecting,GPPRAR0016-8025 27, 876–901.CrossrefWeb of ScienceGoogle Scholar
  • Kaufman, A. A., and G. V. Keller, 1968, Frequency and transient soundings: Elsevier Science Publ. Co.Google Scholar
  • Kaufman, A. A., and P. Hoekstra, 2001, Electromagnetic soundings: Elsevier Science Publ. Co.Google Scholar
  • Kelly, W. E., 1985, Electrical resistivity for estimating groundwater recharge: Journal of Irrigation and Drainage Engineering,JIDEDH0733-9437 111, 177–180.CrossrefWeb of ScienceGoogle Scholar
  • Kemna, A., A. Binley, A. Ramirez, and W. Daily, 2000, Complex resistivity tomography for environmental applications: Chemical Engineering Journal,ZZZZZZ0724-6145 77, 11–18.CrossrefWeb of ScienceGoogle Scholar
  • Koefoed, O., 1979, Geosounding principles, 1. Resistivity sounding measurements: Elsevier Science Publ. Co.Google Scholar
  • Koefoed, O., D. P. Ghosh, and G. J. Polman, 1972, Computations of type curves for electromagnetic depth sounding with horizontal transmitting coil by means of digital linear filtering: Geophysical Prospecting,GPPRAR0016-8025 20, 406–420.CrossrefGoogle Scholar
  • Lawson, C. L., and R. J. Hansen, 1974, Solving least squares problems: Prentice-Hall.Google Scholar
  • Mayne, P. W., D. Brown, J. Vinson, J. A. Schnieder, and K. A. Finke, 2000, Site characterization of Piedmont residuum soils at the NGES, Opelika, Alabama, in J. BenoitA. Lutenegger, eds., American Society of Civil Engineers, Geotechnical Special Publication,JSDEAG0044-8001 93, 160–185.Google Scholar
  • McNeill, J. D., 1980, Electromagnetic terrain conductivity measurement at low induction numbers: Geonics Ltd., Technical Note, TN-6, 1–13.Google Scholar
  • Menke, W., 1984, Geophysical data analysis—Discrete inversion theory: Academic Press, Inc.Google Scholar
  • Morozov, M. A., 1984, Methods for solving incorrectly posed problems: Springer-Verlag.CrossrefGoogle Scholar
  • Paige, C. C., and M. A. Saunders, 1982, LSQR: An algorithm for sparse linear equations and sparse least squares: ACM Transactions Mathematical Software,ACMSCU0098-3500 8, 43–71.CrossrefWeb of ScienceGoogle Scholar
  • Parasnis, D. S., 1997, Principles in applied geophysics: Chapman and Hall.Google Scholar
  • Parker, R. L., 1970, The inversion problem of conductivity in the mantle: Geophysical Journal of the Royal Astronomical Society,GEOJAN0016-8009 22, 121–138.CrossrefWeb of ScienceGoogle Scholar
  • Patra, H. P., and K. Mallick, 1980, Geosounding principles, 2: Elsevier Science Publ. Co.Google Scholar
  • Raiche, A. P., D. L. B. Jupp, H. Rutter, and K. Vozoff, 1985, The joint use of coincident loop transient electromagnetic and Schlumberger sounding to resolve layered structures: Geophysics,GPYSA70016-8033 50, 1618–1627.AbstractWeb of ScienceGoogle Scholar
  • Rix, G. J., and C. G. Lai, 1998, Simultaneous inversion of surface wave velocity and attenuation, in P. K. RobertsonP. W. Mayne, eds., Geotechnical site characterization: Balkema Publishers, 503–508.Google Scholar
  • Ruppel, C., G. Schultz, and S. Kruse, 2000, Anomalous freshwater lens morphology on a strip barrier island: Ground Water,GRWAAP0017-467X 38, 872–881.CrossrefWeb of ScienceGoogle Scholar
  • Sandberg, S. K., 1987, Transient electromagnetic data proceedings applied to a saltwater intruded aquifer in central New Jersey: 57th Annual International Meeting, SEG, Session ENG1. 6.Google Scholar
  • Sasaki, Y., 1989, Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data: Geophysics,GPYSA70016-8033 54, 254–262.AbstractWeb of ScienceGoogle Scholar
  • Sasaki, Y., Y. Yoneda, and K. Matsuo, 1992, Resistivity imaging of controlled-source audiofrequency magnetotelluric data: Geophysics,GPYSA70016-8033 57, 952–955.AbstractWeb of ScienceGoogle Scholar
  • Schultz, G., and C. Ruppel, 2001, Characterizing heterogeneity of surficial aquifers in coastal Georgia using complementary observations: Geological Society of America, Abstracts, 33, A45.Google Scholar
  • Schultz, G., and C. Ruppel, 2002, Constraints on hydraulic parameters and implications for groundwater flux across the upland-estuary interface: Journal of Hydrology,JHYDA70022-1694 260, 255–269.CrossrefWeb of ScienceGoogle Scholar
  • Sharma, S. P., and P. Kaikkonen, 1999, Appraisal of equivalence and suppression problems in 1D EM and DC measurements using global optimization and joint inversion: Geophysical Prospecting,GPPRAR0016-8025 47, 219–249.CrossrefWeb of ScienceGoogle Scholar
  • Sinha, A. K., and P. K. Bhattacharya, 1967, Electrical dipole over an anisotropic and inhomogeneous earth: Geophysics,GPYSA70016-8033 32, 652–667.AbstractWeb of ScienceGoogle Scholar
  • Snyder, M., 2002, Geochemical trends associated with the seawater-freshwater mixing zone in a surficial coastal aquifer, Sapelo Island, Georgia: M.S. thesis, Georgia Institute of Technology.Google Scholar
  • Spies, B. R., and, F. C. Frischknecht, 1991, Electromagnetic sounding, in M. N. Nabighian, ed., Electromagnetic methods in applied geophysics: SEG,IJAMFO0925-2096 2, 285–425.AbstractGoogle Scholar
  • Stepanov, A. A., and J. Christensen-Dalsgaard, 1995, On the choice of trade-off parameter in helioseismic SOLA inversion, in P. SibaniB. H. Jacobsen, Lecture notes in earth sciences: Proceedings of the Interdisciplinary Inversion Conference, Springer-Verlag, 130–138.Google Scholar
  • Stewart, M. T., 1988, Electromagnetic mapping of freshwater lenses on small oceanic islands: Ground Water,GRWAAP0017-467X 26, 187–191.CrossrefWeb of ScienceGoogle Scholar
  • Stoyer, C., and M. Butler, 1994, EMIX34 plus users' manual: Interpex Ltd.Google Scholar
  • Verma, R. K. 1977, Detectability by electromagnetic sounding systems: IEEE Transactions Geoscience Electronics,IEGEAO0018-9413 GE-15, 232–251.CrossrefGoogle Scholar
  • Verma, R. K., 1980, Master tables for electromagnetic depth sounding interpretation: IFI-Plenum.CrossrefGoogle Scholar
  • Wait, J. R., 1982, Geo-electromagnetism: Academic Press Inc.Google Scholar
  • West, G. F., and J. C. Macnae, 1991, Physics of electromagnetic induction exploration method, in M. N. Nabighian, ed., Electromagnetic methods in applied geophysics: SEG,IJAMFO0925-2096 2, 5–44.AbstractGoogle Scholar
  • Whaba, G., 1990, Spline methods for observational data: Conference board of the Mathematical Sciences-National Science Foundation (CBMS-NSF) Regional conference series in applied mathematics, 59, Society for Industrial and Applied Mathematics (SIAM), XII.CrossrefGoogle Scholar
  • Won, I. J., D. A. Keiswetter, G. R. A. Fields, and L. C. Sutton, 1996, GEM-2: A new multifrequency electromagnetic sensor: Journal of Environmental and Engineering Geophysics,JOEEDU0733-9372 1, 129–138.AbstractGoogle Scholar
  • Won, I. J., D. Keiswetter, and E. Novikova, 1998, Electromagnetic induction spectroscopy: Journal of Environmental and Engineering Geophysics,JOEEDU0733-9372 3, 27–40.AbstractGoogle Scholar
  • Xiong, Z., and A. C. Tripp, 1997, 3-D electromagnetic modeling for near-surface targets using integral equations: Geophysics,GPYSA70016-8033 62, 1097–1106AbstractWeb of ScienceGoogle Scholar.