This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.

×

Velocity‐porosity relationships, 1: Accurate velocity model for clean consolidated sandstones

Authors:

We use numerical simulations to derive the elastic properties of model monomineralic consolidated sandstones. The model morphology is based on overlapping spheres of a mineral phase. We consider model quartzose and feldspathic sands. We generate moduli‐porosity relationships for both the dry and water‐saturated states. The ability to control pore space structure and mineralogy results in numerical data sets which exhibit much less noise than corresponding experimental data. The numerical data allows us to quantitatively analyze the effects of porosity and the properties of the mineral phase on the elastic properties of porous rocks. The agreement between the numerical results and available experimental data for clean consolidated sandstones is encouraging.

We compare our numerical data to commonly used theoretical and empirical moduli‐porosity relationships. The self‐consistent method gives the best theoretical fit to the numerical data. We find that the empirical relationship of Krief et al. is successful at describing the numerical data for dry shear modulus and that the recent empirical method of Arns et al. gives a good match to the numerical data for Poisson's ratio or Vp/Vs ratio of dry rock. The Raymer equation is the best of the velocity‐porosity models for the water‐saturated systems. Gassmann's relations are shown to accurately map between the dry and fluid‐saturated states.

Based on these results, we propose a new empirical method, based solely on a knowledge of the mineral modulus, to estimate the full velocity‐porosity relationship for monomineralic consolidated sands under dry and fluid‐saturated states. The method uses the equation of Krief et al. for the dry shear modulus and the empirical equation of Arns et al. for the dry Poisson's ratio. Gassmann's relations are applied to obtain the fluid‐saturated states. The agreement between the new empirical method, the numerical data and available experimental data for dry and water‐saturated states is encouraging.

References

  • 1.  Arns, C. H., Knackstedt, M. A., and Pinczewski, W. V., 2002a, Accurate Vp:Vs relationships for dry consolidated sandstones: Geophys. Res. Lett., 29, art.1202.GPRLAJ0094-8276 Geophys. Res. Lett.
  • 2.  Arns, C. H., Knackstedt, M. A., Pinczewski, W. V., and Garboczi, E. J., 2002b, Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment: Geophysics, 67, 1396–1405.GPYSA70016-8033 Geophysics
  • 3.  Berge, P. A., Berryman, J. G., and Bonner, B. P., 1993, Influence of microstructure on rock elastic properties: Geophys. Res. Lett., 20, 2619–2622.GPRLAJ0094-8276 Geophys. Res. Lett.
  • 4.  Berryman, J. G., 1980, Long‐wavelength propagation in composite elastic media: J. Acous. Soc. Am., 69, 416–424.JASMAN0001-4966 J. Acoust. Soc. Am.1992, Single‐scattering approximations for coefficients in Biot's equations of poroelasticity: J. Acoust. Soc. Am., 91, 551–571.JASMAN0001-4966 J. Acoust. Soc. Am.
  • 5.  Budiansky, B., 1965, On the elastic moduli of some heterogeneous materials: J. Mech. Phys. Solids, 13, 223–227.JMPSA80022-5096 J. Mech. Phys. Solids
  • 6.  Castagna, J. P., Batzle, M. L., and Kan, T. K., 1993, Rock physics—The link between rock properties and AVO response, in Castagna, J. P., and Backus, M. M., Eds., Offset‐dependent reflectivity—Theory and practice of AVO analysis:: Soc. Expl. Geophys., 135–171.
  • 7.  Day, A. R., Snyder, K. A., Garboczi, E. J., and Thorpe, M. F., 1992, The elastic moduli of a sheet containing circular holes: J. Mech. and Phys. of Solids, 40, 1031–1051.JMPSA80022-5096 J. Mech. Phys. Solids
  • 8.  Garboczi, E. J., 1998, Finite element and finite difference programs for computing the linear electric and linear elastic properties of digital images of random materials: National Institute of Standards and Technology Internal Report 6269..
  • 9.  Garboczi, E. J., and Day, A. R., 1995, An algorithm for computing the effective linear elastic properties of heterogeneous materials: Three‐dimensional results for composites with equal phase Poisson ratios: J. Mech. Phys. Solids, 43, 1349–1362.JMPSA80022-5096 J. Mech. Phys. Solids
  • 10.  Gubernatis, J., and Krumsahl, J., 1975, Macroscopic engineering properties of polycrystalline materials: J. Appl. Phys., 46, 1875–1883.JAPIAU0021-8979 J. Appl. Phys.
  • 11.  Han, D.‐H., 1986, Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments: Ph.D. diss., Stanford University.
  • 12.  Hashin, Z., 1983, Analysis of composite materials: A survey: J. Appl. Mech., 50, 481–505.JAMCAV0021-8936 J. Appl. Mech.
  • 13.  Hashin, Z., and Shtrikman, S., 1962, A variational approach to the theory of the effective magnetic permeability of multiphase materials: J. Appl. Phys., 33, 3125–3131.JAPIAU0021-8979 J. Appl. Phys.1963, A variational approach to the elastic behaviour of multiphase materials: J. Mech. Phys. Solids, 11, 127–140.JMPSA80022-5096 J. Mech. Phys. Solids
  • 14.  Hill, R., 1965, A self‐consistent mechanics of composite materials: J. Mech. Phys. Solids, 13, 213–222.JMPSA80022-5096 J. Mech. Phys. Solids
  • 15.  Korringa, J., Brown, R., thompson, D., and Runge, R., 1979, Self consistent imbedding and the ellipsoidal model for porous rocks: J. Geophys. Res., 84, 5591–5598.JGREA20148-0227 J. Geophys. Res.
  • 16.  Krief, M., Garat, J., Stellingwerff, J., and Ventre, J., 1990, A petrophysical interpretation using the velocities of P and S waves (full waveform sonic): The Log Analyst, 31, 355–369.ZZZZZZ0024-581X Log Analyst
  • 17.  Marion, D., Nur, A., Yin, H., and Han, D., 1992, Compressional velocity and porosity in sand‐clay mixtures: Geophysics, 57, 554–563.GPYSA70016-8033 Geophysics
  • 18.  Mavko, G., Mukerji, T., and Dvorkin, J., The rock physics handbook, Cambridge University Press: 1998.
  • 19.  Milton, G. W., 1982, Bounds on the elastic and transport properties of two‐component composites: J. Mech. Phys. Solids, 30, 177–191.JMPSA80022-5096 J. Mech. Phys. Solids
  • 20.  Mukerji, T., Berryman, J., Mavko, G., and Berge, P., 1995, Differential effective medium modeling of rock elastic moduli with critical porosity constraints: Geophys. Res. Lett., 22, 555–558.GPRLAJ0094-8276 Geophys. Res. Lett.
  • 21.  Nur, A., Marion, D., and Yin, H., 1991, Wave velocities in sediments, in Hovem, J., Richardson, M. D., and Stoll, R. D., Eds., Shear waves in marine sediments: Kluwer Academic, Press, 131–140.
  • 22.  Nur, A., Mavko, G., Dvorkin, J., and Galmundi, D., 1995, Critical porosity: The key to relating physical properties to porosity in rocks: 65th Ann Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts 878.
  • 23.  Øren, P. E., Bakke, S., and Arntzen, O. J., 1998, Extending predictive capabilities to network models: Soc. Petr. Eng. J., 3, 324–336.SPJRFW1086-055X Soc. Pet. Eng. J.
  • 24.  Pickett, G. R., 1963, Acoustic character logs and their applications in formation evaluation: J. Petr Tech., 15, 650–667.JPTCAZ0022-3522 J. Pet. Technol.
  • 25.  Raymer, L. L., Hunt, E. R., and Gardner, J. S., 1980, An improved sonic transit time to porosity transform: 21st Ann. Logging Symp., Soc. Prof. Well Log Analysts, Trans., Paper P.
  • 26.  Roberts, A. P., and Garboczi, E. J., 2000, Elastic properties of model porous ceramics: J. Am. Ceramic Soc., 83, 3041–3048.JACTAW0002-7820 J. Am. Ceram. Soc.
  • 27.  Thovert, J.‐F., Yousefian, F., Spanne, P., Jacquin, C. G., and Adler, P. M., 2001, Grain reconstruction of porous media: Application to a low‐porosity Fontainebleau sandstone: Phys. Rev. E, 63, 061307.
  • 28.  Wyllie, M., Gregory, A., and Gardner, G., 1956, Elastic wave velocities in heterogeneous and porous media: Geophysics, 21, 41–70.GPYSA70016-8033 Geophysics1958, An experimental investigation of factors affecting elastic wave velocities in porous media: Geophysics, 23, 459–493.GPYSA70016-8033 Geophysics
  • 29.  Wyllie, M., Gardner, G., and Gregory, A., 1963, Studies of elastic wave attenuation in porous media: Geophysics, 27, 569–589.GPYSA70016-8033 Geophysics