This website uses cookies to improve your experience. If you continue without changing your settings, you consent to our use of cookies in accordance with our cookie policy. You can disable cookies at any time.


Depth‐domain velocity analysis in VTI media using surface P-wave data: Is it feasible?


The main difficulties in anisotropic velocity analysis and inversion using surface seismic data are associated with the multiparameter nature of the problem and inherent trade‐offs between the model parameters. For the most common anisotropic model, transverse isotropy with a vertical symmetry axis (VTI media), P-wave kinematic signatures are controlled by the vertical velocity V0 and the anisotropic parameters ε and δ. However, only two combinations of these parameters—NMO velocity from a horizontal reflector Vnmo(0) and the anellipticity coefficient η—can be determined from P-wave reflection traveltimes if the medium above the reflector is laterally homogeneous. While Vnmo(0) and η are sufficient for time‐domain imaging in VTI media, they cannot be used to resolve the vertical velocity and build velocity models needed for depth migration. Here, we demonstrate that P-wave reflection data can be inverted for all three relevant VTI parameters (V0, ε and δ) if the model contains nonhorizontal intermediate interfaces. Using anisotropic reflection tomography, we carry out parameter estimation for a two‐layer medium with a curved intermediate interface and reconstruct the correct anisotropic depth model. To explain the success of this inversion procedure, we present an analytic study of reflection traveltimes for this model and show that the information about the vertical velocity and reflector depth was contained in the reflected rays which crossed the dipping intermediate interface. The results of this work are especially encouraging because the need for depth imaging (such as prestack depth migration) arises mostly in laterally heterogeneous media. Still, we restricted this study to a relatively simple model and constrained the inversion by assuming that one of the layers is isotropic. In general, although lateral heterogeneity does create a dependence of P-wave reflection traveltimes on the vertical velocity, there is no guarantee that for more complicated models all anisotropic parameters can be resolved in a unique fashion.


  • 1.  Alkhalifah, T., and Tsvankin, I., 1995, Velocity analysis in transversely isotropic media: Geophysics, 60, 1550–1566.gpyGPYSA70016-8033 GeophysicsAbstractWeb of ScienceGoogle Scholar
  • 2.  Alkhalifah, T., Biondi, B., and Fomel, S., 1998, Time‐domain processing in arbitrary inhomogeneous media: 68th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1756–1759.AbstractGoogle Scholar
  • 3.  Bartel, D. C., Abriel, W. L., Meadows, M. A., and Hill, N. R., 1998, Determination of transversely isotropic velocity parameters at the Pluto Discovery, Gulf of Mexico: 68th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1269–1272.AbstractGoogle Scholar
  • 4.  Bube, K. P., and Meadows, M. A., 1997, On the null space in linearized anisotropic surface reflection tomography: 67th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1677–1680.AbstractGoogle Scholar
  • 5.  Dix, C. H., 1955, Seismic velocities from surface measurements: Geophysics, 20, 68–86.gpyGPYSA70016-8033 GeophysicsAbstractGoogle Scholar
  • 6.  Goldin, S. V., 1986, Seismic traveltime inversion: Soc. Expl. Geophys.Google Scholar
  • 7.  Grechka, V., and Tsvankin, I., 1998, 3-D description of normal moveout in anisotropic inhomogeneous media: Geophysics, 63, 1079–1092.gpyGPYSA70016-8033 GeophysicsAbstractWeb of ScienceGoogle Scholar1999, NMO surfaces and Dix‐type formulae in heterogeneous anisotropic media: 69th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1612–1615.AbstractWeb of ScienceGoogle Scholar
  • 8.  Grechka, V., Tsvankin, I., and Cohen, J. K., 1999, Generalized Dix equation and analytic treatment of normal‐moveout velocity for anisotropic media: Geophys. Prosp., 47, 117–148.8ucGPPRAR0016-8025 Geophys. Prospect.CrossrefWeb of ScienceGoogle Scholar
  • 9.  Kaculini, S., and Guiziou, J. L., 1992, Prestack reflection tomography in practice: 62nd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1046–1049.AbstractGoogle Scholar
  • 10.  Le Stunff, Y., and Grenié, D., 1998, Taking into account a priori information in 3D tomography: 68th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1875–1878.AbstractGoogle Scholar
  • 11.  Le Stunff, Y., and Jeannot, J. P., 1998, Pre‐stack anisotropic depth imaging: 60th EAGE Conference, Extended Abstracts.CrossrefGoogle Scholar
  • 12.  Sexton, P., and Williamson, P., 1998, 3-D anisotropic velocity estimation by model‐based inversion of pre‐stack traveltimes: 68th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1855–1858.AbstractGoogle Scholar
  • 13.  Stork, C., and Clayton, R. W., 1985, Iterative tomographic and migration reconstruction of seismic images: 55th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 610–613.AbstractGoogle Scholar
  • 14.  Tarantola, A., 1987, Inverse problem theory: Methods for data fitting and model parameter estimation: Elsevier Science Publ. Co., Inc.Google Scholar
  • 15.  Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954–1966.gpyGPYSA70016-8033 GeophysicsAbstractWeb of ScienceGoogle Scholar
  • 16.  Tsvankin, I., 1996, P-wave signatures and notation for transversely isotropic media: An overview: Geophysics, 61, 467–483.gpyGPYSA70016-8033 GeophysicsAbstractWeb of ScienceGoogle Scholar
  • 17.  Tsvankin, I., and Thomsen, L., 1995, Inversion of reflection traveltimes for transverse isotropy: Geophysics, 60, 1095–1107.gpyGPYSA70016-8033 GeophysicsAbstractWeb of ScienceGoogle Scholar